LLVM OpenMP* Runtime Library
 All Classes Functions Variables Typedefs Enumerations Enumerator Modules Pages
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33 
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66  struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96  cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106  "Illegal set affinity operation when not capable");
107 
108  kmp_affin_mask_t *mask;
109  KMP_CPU_ALLOC_ON_STACK(mask);
110  KMP_CPU_ZERO(mask);
111  KMP_CPU_SET(which, mask);
112  __kmp_set_system_affinity(mask, TRUE);
113  KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124  int gCode;
125  int sCode;
126  unsigned char *buf;
127  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129  // If Linux* OS:
130  // If the syscall fails or returns a suggestion for the size,
131  // then we don't have to search for an appropriate size.
132  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134  "initial getaffinity call returned %d errno = %d\n",
135  gCode, errno));
136 
137  // if ((gCode < 0) && (errno == ENOSYS))
138  if (gCode < 0) {
139  // System call not supported
140  if (__kmp_affinity_verbose ||
141  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142  (__kmp_affinity_type != affinity_default) &&
143  (__kmp_affinity_type != affinity_disabled))) {
144  int error = errno;
145  kmp_msg_t err_code = KMP_ERR(error);
146  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147  err_code, __kmp_msg_null);
148  if (__kmp_generate_warnings == kmp_warnings_off) {
149  __kmp_str_free(&err_code.str);
150  }
151  }
152  KMP_AFFINITY_DISABLE();
153  KMP_INTERNAL_FREE(buf);
154  return;
155  }
156  if (gCode > 0) { // Linux* OS only
157  // The optimal situation: the OS returns the size of the buffer it expects.
158  //
159  // A verification of correct behavior is that Isetaffinity on a NULL
160  // buffer with the same size fails with errno set to EFAULT.
161  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163  "setaffinity for mask size %d returned %d errno = %d\n",
164  gCode, sCode, errno));
165  if (sCode < 0) {
166  if (errno == ENOSYS) {
167  if (__kmp_affinity_verbose ||
168  (__kmp_affinity_warnings &&
169  (__kmp_affinity_type != affinity_none) &&
170  (__kmp_affinity_type != affinity_default) &&
171  (__kmp_affinity_type != affinity_disabled))) {
172  int error = errno;
173  kmp_msg_t err_code = KMP_ERR(error);
174  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175  err_code, __kmp_msg_null);
176  if (__kmp_generate_warnings == kmp_warnings_off) {
177  __kmp_str_free(&err_code.str);
178  }
179  }
180  KMP_AFFINITY_DISABLE();
181  KMP_INTERNAL_FREE(buf);
182  }
183  if (errno == EFAULT) {
184  KMP_AFFINITY_ENABLE(gCode);
185  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186  "affinity supported (mask size %d)\n",
187  (int)__kmp_affin_mask_size));
188  KMP_INTERNAL_FREE(buf);
189  return;
190  }
191  }
192  }
193 
194  // Call the getaffinity system call repeatedly with increasing set sizes
195  // until we succeed, or reach an upper bound on the search.
196  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197  "searching for proper set size\n"));
198  int size;
199  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202  "getaffinity for mask size %d returned %d errno = %d\n",
203  size, gCode, errno));
204 
205  if (gCode < 0) {
206  if (errno == ENOSYS) {
207  // We shouldn't get here
208  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209  "inconsistent OS call behavior: errno == ENOSYS for mask "
210  "size %d\n",
211  size));
212  if (__kmp_affinity_verbose ||
213  (__kmp_affinity_warnings &&
214  (__kmp_affinity_type != affinity_none) &&
215  (__kmp_affinity_type != affinity_default) &&
216  (__kmp_affinity_type != affinity_disabled))) {
217  int error = errno;
218  kmp_msg_t err_code = KMP_ERR(error);
219  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220  err_code, __kmp_msg_null);
221  if (__kmp_generate_warnings == kmp_warnings_off) {
222  __kmp_str_free(&err_code.str);
223  }
224  }
225  KMP_AFFINITY_DISABLE();
226  KMP_INTERNAL_FREE(buf);
227  return;
228  }
229  continue;
230  }
231 
232  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234  "setaffinity for mask size %d returned %d errno = %d\n",
235  gCode, sCode, errno));
236  if (sCode < 0) {
237  if (errno == ENOSYS) { // Linux* OS only
238  // We shouldn't get here
239  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240  "inconsistent OS call behavior: errno == ENOSYS for mask "
241  "size %d\n",
242  size));
243  if (__kmp_affinity_verbose ||
244  (__kmp_affinity_warnings &&
245  (__kmp_affinity_type != affinity_none) &&
246  (__kmp_affinity_type != affinity_default) &&
247  (__kmp_affinity_type != affinity_disabled))) {
248  int error = errno;
249  kmp_msg_t err_code = KMP_ERR(error);
250  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251  err_code, __kmp_msg_null);
252  if (__kmp_generate_warnings == kmp_warnings_off) {
253  __kmp_str_free(&err_code.str);
254  }
255  }
256  KMP_AFFINITY_DISABLE();
257  KMP_INTERNAL_FREE(buf);
258  return;
259  }
260  if (errno == EFAULT) {
261  KMP_AFFINITY_ENABLE(gCode);
262  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263  "affinity supported (mask size %d)\n",
264  (int)__kmp_affin_mask_size));
265  KMP_INTERNAL_FREE(buf);
266  return;
267  }
268  }
269  }
270  // save uncaught error code
271  // int error = errno;
272  KMP_INTERNAL_FREE(buf);
273  // restore uncaught error code, will be printed at the next KMP_WARNING below
274  // errno = error;
275 
276  // Affinity is not supported
277  KMP_AFFINITY_DISABLE();
278  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279  "cannot determine mask size - affinity not supported\n"));
280  if (__kmp_affinity_verbose ||
281  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282  (__kmp_affinity_type != affinity_default) &&
283  (__kmp_affinity_type != affinity_disabled))) {
284  KMP_WARNING(AffCantGetMaskSize, env_var);
285  }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293  int loc = 0;
294  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295  int retval = (rc == 0) || (errno != ENOSYS);
296 
297  KA_TRACE(10,
298  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300  retval ? "" : " not"));
301 
302  return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309  use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312  kmp_int8 old_value, new_value;
313 
314  old_value = TCR_1(*p);
315  new_value = old_value | d;
316 
317  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318  KMP_CPU_PAUSE();
319  old_value = TCR_1(*p);
320  new_value = old_value | d;
321  }
322  return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326  kmp_int8 old_value, new_value;
327 
328  old_value = TCR_1(*p);
329  new_value = old_value & d;
330 
331  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332  KMP_CPU_PAUSE();
333  old_value = TCR_1(*p);
334  new_value = old_value & d;
335  }
336  return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340  kmp_uint32 old_value, new_value;
341 
342  old_value = TCR_4(*p);
343  new_value = old_value | d;
344 
345  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346  KMP_CPU_PAUSE();
347  old_value = TCR_4(*p);
348  new_value = old_value | d;
349  }
350  return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354  kmp_uint32 old_value, new_value;
355 
356  old_value = TCR_4(*p);
357  new_value = old_value & d;
358 
359  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360  KMP_CPU_PAUSE();
361  old_value = TCR_4(*p);
362  new_value = old_value & d;
363  }
364  return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369  kmp_int8 old_value, new_value;
370 
371  old_value = TCR_1(*p);
372  new_value = old_value + d;
373 
374  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375  KMP_CPU_PAUSE();
376  old_value = TCR_1(*p);
377  new_value = old_value + d;
378  }
379  return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383  kmp_int64 old_value, new_value;
384 
385  old_value = TCR_8(*p);
386  new_value = old_value + d;
387 
388  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389  KMP_CPU_PAUSE();
390  old_value = TCR_8(*p);
391  new_value = old_value + d;
392  }
393  return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398  kmp_uint64 old_value, new_value;
399 
400  old_value = TCR_8(*p);
401  new_value = old_value | d;
402  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403  KMP_CPU_PAUSE();
404  old_value = TCR_8(*p);
405  new_value = old_value | d;
406  }
407  return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411  kmp_uint64 old_value, new_value;
412 
413  old_value = TCR_8(*p);
414  new_value = old_value & d;
415  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416  KMP_CPU_PAUSE();
417  old_value = TCR_8(*p);
418  new_value = old_value & d;
419  }
420  return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426  int status;
427  kmp_info_t *th = __kmp_threads[gtid];
428 
429  if (!th)
430  return;
431 
432 #ifdef KMP_CANCEL_THREADS
433  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434  status = pthread_cancel(th->th.th_info.ds.ds_thread);
435  if (status != 0 && status != ESRCH) {
436  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437  __kmp_msg_null);
438  }
439 #endif
440  __kmp_yield(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444  If values are unreasonable, assume call failed and use incremental stack
445  refinement method instead. Returns TRUE if the stack parameters could be
446  determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448  int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
450  KMP_OS_HURD || KMP_OS_KFREEBSD
451  pthread_attr_t attr;
452  int status;
453  size_t size = 0;
454  void *addr = 0;
455 
456  /* Always do incremental stack refinement for ubermaster threads since the
457  initial thread stack range can be reduced by sibling thread creation so
458  pthread_attr_getstack may cause thread gtid aliasing */
459  if (!KMP_UBER_GTID(gtid)) {
460 
461  /* Fetch the real thread attributes */
462  status = pthread_attr_init(&attr);
463  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465  status = pthread_attr_get_np(pthread_self(), &attr);
466  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468  status = pthread_getattr_np(pthread_self(), &attr);
469  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471  status = pthread_attr_getstack(&attr, &addr, &size);
472  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473  KA_TRACE(60,
474  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475  " %lu, low addr: %p\n",
476  gtid, size, addr));
477  status = pthread_attr_destroy(&attr);
478  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479  }
480 
481  if (size != 0 && addr != 0) { // was stack parameter determination successful?
482  /* Store the correct base and size */
483  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486  return TRUE;
487  }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489  KMP_OS_HURD */
490  /* Use incremental refinement starting from initial conservative estimate */
491  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494  return FALSE;
495 }
496 
497 static void *__kmp_launch_worker(void *thr) {
498  int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500  sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502  void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
504  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
505  void *volatile padding = 0;
506 #endif
507  int gtid;
508 
509  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510  __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512  __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515  // set thread local index to point to thread-specific stats
516  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517  __kmp_stats_thread_ptr->startLife();
518  KMP_SET_THREAD_STATE(IDLE);
519  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521 
522 #if USE_ITT_BUILD
523  __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525 
526 #if KMP_AFFINITY_SUPPORTED
527  __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529 
530 #ifdef KMP_CANCEL_THREADS
531  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537 
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539  // Set FP control regs to be a copy of the parallel initialization thread's.
540  __kmp_clear_x87_fpu_status_word();
541  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542  __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544 
545 #ifdef KMP_BLOCK_SIGNALS
546  status = sigfillset(&new_set);
547  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551 
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
553  KMP_OS_OPENBSD
554  if (__kmp_stkoffset > 0 && gtid > 0) {
555  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556  }
557 #endif
558 
559  KMP_MB();
560  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562  __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571  return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
577 static void *__kmp_launch_monitor(void *thr) {
578  int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580  sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582  struct timespec interval;
583  int yield_count;
584  int yield_cycles = 0;
585 
586  KMP_MB(); /* Flush all pending memory write invalidates. */
587 
588  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
589 
590  /* register us as the monitor thread */
591  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
592 #ifdef KMP_TDATA_GTID
593  __kmp_gtid = KMP_GTID_MONITOR;
594 #endif
595 
596  KMP_MB();
597 
598 #if USE_ITT_BUILD
599  // Instruct Intel(R) Threading Tools to ignore monitor thread.
600  __kmp_itt_thread_ignore();
601 #endif /* USE_ITT_BUILD */
602 
603  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
604  (kmp_info_t *)thr);
605 
606  __kmp_check_stack_overlap((kmp_info_t *)thr);
607 
608 #ifdef KMP_CANCEL_THREADS
609  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
610  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
611  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
612  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
613  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
614 #endif
615 
616 #if KMP_REAL_TIME_FIX
617  // This is a potential fix which allows application with real-time scheduling
618  // policy work. However, decision about the fix is not made yet, so it is
619  // disabled by default.
620  { // Are program started with real-time scheduling policy?
621  int sched = sched_getscheduler(0);
622  if (sched == SCHED_FIFO || sched == SCHED_RR) {
623  // Yes, we are a part of real-time application. Try to increase the
624  // priority of the monitor.
625  struct sched_param param;
626  int max_priority = sched_get_priority_max(sched);
627  int rc;
628  KMP_WARNING(RealTimeSchedNotSupported);
629  sched_getparam(0, &param);
630  if (param.sched_priority < max_priority) {
631  param.sched_priority += 1;
632  rc = sched_setscheduler(0, sched, &param);
633  if (rc != 0) {
634  int error = errno;
635  kmp_msg_t err_code = KMP_ERR(error);
636  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
637  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
638  if (__kmp_generate_warnings == kmp_warnings_off) {
639  __kmp_str_free(&err_code.str);
640  }
641  }
642  } else {
643  // We cannot abort here, because number of CPUs may be enough for all
644  // the threads, including the monitor thread, so application could
645  // potentially work...
646  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
647  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
648  __kmp_msg_null);
649  }
650  }
651  // AC: free thread that waits for monitor started
652  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
653  }
654 #endif // KMP_REAL_TIME_FIX
655 
656  KMP_MB(); /* Flush all pending memory write invalidates. */
657 
658  if (__kmp_monitor_wakeups == 1) {
659  interval.tv_sec = 1;
660  interval.tv_nsec = 0;
661  } else {
662  interval.tv_sec = 0;
663  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
664  }
665 
666  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
667 
668  if (__kmp_yield_cycle) {
669  __kmp_yielding_on = 0; /* Start out with yielding shut off */
670  yield_count = __kmp_yield_off_count;
671  } else {
672  __kmp_yielding_on = 1; /* Yielding is on permanently */
673  }
674 
675  while (!TCR_4(__kmp_global.g.g_done)) {
676  struct timespec now;
677  struct timeval tval;
678 
679  /* This thread monitors the state of the system */
680 
681  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
682 
683  status = gettimeofday(&tval, NULL);
684  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
685  TIMEVAL_TO_TIMESPEC(&tval, &now);
686 
687  now.tv_sec += interval.tv_sec;
688  now.tv_nsec += interval.tv_nsec;
689 
690  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
691  now.tv_sec += 1;
692  now.tv_nsec -= KMP_NSEC_PER_SEC;
693  }
694 
695  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
696  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
697  // AC: the monitor should not fall asleep if g_done has been set
698  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
699  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
700  &__kmp_wait_mx.m_mutex, &now);
701  if (status != 0) {
702  if (status != ETIMEDOUT && status != EINTR) {
703  KMP_SYSFAIL("pthread_cond_timedwait", status);
704  }
705  }
706  }
707  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
708  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
709 
710  if (__kmp_yield_cycle) {
711  yield_cycles++;
712  if ((yield_cycles % yield_count) == 0) {
713  if (__kmp_yielding_on) {
714  __kmp_yielding_on = 0; /* Turn it off now */
715  yield_count = __kmp_yield_off_count;
716  } else {
717  __kmp_yielding_on = 1; /* Turn it on now */
718  yield_count = __kmp_yield_on_count;
719  }
720  yield_cycles = 0;
721  }
722  } else {
723  __kmp_yielding_on = 1;
724  }
725 
726  TCW_4(__kmp_global.g.g_time.dt.t_value,
727  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
728 
729  KMP_MB(); /* Flush all pending memory write invalidates. */
730  }
731 
732  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
733 
734 #ifdef KMP_BLOCK_SIGNALS
735  status = sigfillset(&new_set);
736  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
737  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
738  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
739 #endif /* KMP_BLOCK_SIGNALS */
740 
741  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
742 
743  if (__kmp_global.g.g_abort != 0) {
744  /* now we need to terminate the worker threads */
745  /* the value of t_abort is the signal we caught */
746 
747  int gtid;
748 
749  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
750  __kmp_global.g.g_abort));
751 
752  /* terminate the OpenMP worker threads */
753  /* TODO this is not valid for sibling threads!!
754  * the uber master might not be 0 anymore.. */
755  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
756  __kmp_terminate_thread(gtid);
757 
758  __kmp_cleanup();
759 
760  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
761  __kmp_global.g.g_abort));
762 
763  if (__kmp_global.g.g_abort > 0)
764  raise(__kmp_global.g.g_abort);
765  }
766 
767  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
768 
769  return thr;
770 }
771 #endif // KMP_USE_MONITOR
772 
773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
774  pthread_t handle;
775  pthread_attr_t thread_attr;
776  int status;
777 
778  th->th.th_info.ds.ds_gtid = gtid;
779 
780 #if KMP_STATS_ENABLED
781  // sets up worker thread stats
782  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
783 
784  // th->th.th_stats is used to transfer thread-specific stats-pointer to
785  // __kmp_launch_worker. So when thread is created (goes into
786  // __kmp_launch_worker) it will set its thread local pointer to
787  // th->th.th_stats
788  if (!KMP_UBER_GTID(gtid)) {
789  th->th.th_stats = __kmp_stats_list->push_back(gtid);
790  } else {
791  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
792  // so set the th->th.th_stats field to it.
793  th->th.th_stats = __kmp_stats_thread_ptr;
794  }
795  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
796 
797 #endif // KMP_STATS_ENABLED
798 
799  if (KMP_UBER_GTID(gtid)) {
800  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
801  th->th.th_info.ds.ds_thread = pthread_self();
802  __kmp_set_stack_info(gtid, th);
803  __kmp_check_stack_overlap(th);
804  return;
805  }
806 
807  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
808 
809  KMP_MB(); /* Flush all pending memory write invalidates. */
810 
811 #ifdef KMP_THREAD_ATTR
812  status = pthread_attr_init(&thread_attr);
813  if (status != 0) {
814  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
815  }
816  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
817  if (status != 0) {
818  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
819  }
820 
821  /* Set stack size for this thread now.
822  The multiple of 2 is there because on some machines, requesting an unusual
823  stacksize causes the thread to have an offset before the dummy alloca()
824  takes place to create the offset. Since we want the user to have a
825  sufficient stacksize AND support a stack offset, we alloca() twice the
826  offset so that the upcoming alloca() does not eliminate any premade offset,
827  and also gives the user the stack space they requested for all threads */
828  stack_size += gtid * __kmp_stkoffset * 2;
829 
830  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
831  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
832  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
833 
834 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
835  status = pthread_attr_setstacksize(&thread_attr, stack_size);
836 #ifdef KMP_BACKUP_STKSIZE
837  if (status != 0) {
838  if (!__kmp_env_stksize) {
839  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
840  __kmp_stksize = KMP_BACKUP_STKSIZE;
841  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
842  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
843  "bytes\n",
844  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
845  status = pthread_attr_setstacksize(&thread_attr, stack_size);
846  }
847  }
848 #endif /* KMP_BACKUP_STKSIZE */
849  if (status != 0) {
850  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
851  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
852  }
853 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
854 
855 #endif /* KMP_THREAD_ATTR */
856 
857  status =
858  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
859  if (status != 0 || !handle) { // ??? Why do we check handle??
860 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
861  if (status == EINVAL) {
862  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
863  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
864  }
865  if (status == ENOMEM) {
866  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
867  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
868  }
869 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
870  if (status == EAGAIN) {
871  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
872  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
873  }
874  KMP_SYSFAIL("pthread_create", status);
875  }
876 
877  th->th.th_info.ds.ds_thread = handle;
878 
879 #ifdef KMP_THREAD_ATTR
880  status = pthread_attr_destroy(&thread_attr);
881  if (status) {
882  kmp_msg_t err_code = KMP_ERR(status);
883  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
884  __kmp_msg_null);
885  if (__kmp_generate_warnings == kmp_warnings_off) {
886  __kmp_str_free(&err_code.str);
887  }
888  }
889 #endif /* KMP_THREAD_ATTR */
890 
891  KMP_MB(); /* Flush all pending memory write invalidates. */
892 
893  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
894 
895 } // __kmp_create_worker
896 
897 #if KMP_USE_MONITOR
898 void __kmp_create_monitor(kmp_info_t *th) {
899  pthread_t handle;
900  pthread_attr_t thread_attr;
901  size_t size;
902  int status;
903  int auto_adj_size = FALSE;
904 
905  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
906  // We don't need monitor thread in case of MAX_BLOCKTIME
907  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
908  "MAX blocktime\n"));
909  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
910  th->th.th_info.ds.ds_gtid = 0;
911  return;
912  }
913  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
914 
915  KMP_MB(); /* Flush all pending memory write invalidates. */
916 
917  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
918  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
919 #if KMP_REAL_TIME_FIX
920  TCW_4(__kmp_global.g.g_time.dt.t_value,
921  -1); // Will use it for synchronization a bit later.
922 #else
923  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
924 #endif // KMP_REAL_TIME_FIX
925 
926 #ifdef KMP_THREAD_ATTR
927  if (__kmp_monitor_stksize == 0) {
928  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
929  auto_adj_size = TRUE;
930  }
931  status = pthread_attr_init(&thread_attr);
932  if (status != 0) {
933  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
934  }
935  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
936  if (status != 0) {
937  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
938  }
939 
940 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
941  status = pthread_attr_getstacksize(&thread_attr, &size);
942  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
943 #else
944  size = __kmp_sys_min_stksize;
945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
946 #endif /* KMP_THREAD_ATTR */
947 
948  if (__kmp_monitor_stksize == 0) {
949  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
950  }
951  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
952  __kmp_monitor_stksize = __kmp_sys_min_stksize;
953  }
954 
955  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
956  "requested stacksize = %lu bytes\n",
957  size, __kmp_monitor_stksize));
958 
959 retry:
960 
961 /* Set stack size for this thread now. */
962 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
963  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
964  __kmp_monitor_stksize));
965  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
966  if (status != 0) {
967  if (auto_adj_size) {
968  __kmp_monitor_stksize *= 2;
969  goto retry;
970  }
971  kmp_msg_t err_code = KMP_ERR(status);
972  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
973  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
974  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
975  if (__kmp_generate_warnings == kmp_warnings_off) {
976  __kmp_str_free(&err_code.str);
977  }
978  }
979 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
980 
981  status =
982  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
983 
984  if (status != 0) {
985 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
986  if (status == EINVAL) {
987  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
988  __kmp_monitor_stksize *= 2;
989  goto retry;
990  }
991  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
992  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
993  __kmp_msg_null);
994  }
995  if (status == ENOMEM) {
996  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
997  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
998  __kmp_msg_null);
999  }
1000 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1001  if (status == EAGAIN) {
1002  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1003  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1004  }
1005  KMP_SYSFAIL("pthread_create", status);
1006  }
1007 
1008  th->th.th_info.ds.ds_thread = handle;
1009 
1010 #if KMP_REAL_TIME_FIX
1011  // Wait for the monitor thread is really started and set its *priority*.
1012  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1013  sizeof(__kmp_global.g.g_time.dt.t_value));
1014  __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value,
1015  -1, &__kmp_neq_4, NULL);
1016 #endif // KMP_REAL_TIME_FIX
1017 
1018 #ifdef KMP_THREAD_ATTR
1019  status = pthread_attr_destroy(&thread_attr);
1020  if (status != 0) {
1021  kmp_msg_t err_code = KMP_ERR(status);
1022  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1023  __kmp_msg_null);
1024  if (__kmp_generate_warnings == kmp_warnings_off) {
1025  __kmp_str_free(&err_code.str);
1026  }
1027  }
1028 #endif
1029 
1030  KMP_MB(); /* Flush all pending memory write invalidates. */
1031 
1032  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1033  th->th.th_info.ds.ds_thread));
1034 
1035 } // __kmp_create_monitor
1036 #endif // KMP_USE_MONITOR
1037 
1038 void __kmp_exit_thread(int exit_status) {
1039  pthread_exit((void *)(intptr_t)exit_status);
1040 } // __kmp_exit_thread
1041 
1042 #if KMP_USE_MONITOR
1043 void __kmp_resume_monitor();
1044 
1045 void __kmp_reap_monitor(kmp_info_t *th) {
1046  int status;
1047  void *exit_val;
1048 
1049  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1050  " %#.8lx\n",
1051  th->th.th_info.ds.ds_thread));
1052 
1053  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1054  // If both tid and gtid are 0, it means the monitor did not ever start.
1055  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1056  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1057  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1058  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1059  return;
1060  }
1061 
1062  KMP_MB(); /* Flush all pending memory write invalidates. */
1063 
1064  /* First, check to see whether the monitor thread exists to wake it up. This
1065  is to avoid performance problem when the monitor sleeps during
1066  blocktime-size interval */
1067 
1068  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1069  if (status != ESRCH) {
1070  __kmp_resume_monitor(); // Wake up the monitor thread
1071  }
1072  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1073  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074  if (exit_val != th) {
1075  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1076  }
1077 
1078  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1079  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1080 
1081  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1082  " %#.8lx\n",
1083  th->th.th_info.ds.ds_thread));
1084 
1085  KMP_MB(); /* Flush all pending memory write invalidates. */
1086 }
1087 #endif // KMP_USE_MONITOR
1088 
1089 void __kmp_reap_worker(kmp_info_t *th) {
1090  int status;
1091  void *exit_val;
1092 
1093  KMP_MB(); /* Flush all pending memory write invalidates. */
1094 
1095  KA_TRACE(
1096  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1097 
1098  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1099 #ifdef KMP_DEBUG
1100  /* Don't expose these to the user until we understand when they trigger */
1101  if (status != 0) {
1102  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1103  }
1104  if (exit_val != th) {
1105  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1106  "exit_val = %p\n",
1107  th->th.th_info.ds.ds_gtid, exit_val));
1108  }
1109 #endif /* KMP_DEBUG */
1110 
1111  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1112  th->th.th_info.ds.ds_gtid));
1113 
1114  KMP_MB(); /* Flush all pending memory write invalidates. */
1115 }
1116 
1117 #if KMP_HANDLE_SIGNALS
1118 
1119 static void __kmp_null_handler(int signo) {
1120  // Do nothing, for doing SIG_IGN-type actions.
1121 } // __kmp_null_handler
1122 
1123 static void __kmp_team_handler(int signo) {
1124  if (__kmp_global.g.g_abort == 0) {
1125 /* Stage 1 signal handler, let's shut down all of the threads */
1126 #ifdef KMP_DEBUG
1127  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1128 #endif
1129  switch (signo) {
1130  case SIGHUP:
1131  case SIGINT:
1132  case SIGQUIT:
1133  case SIGILL:
1134  case SIGABRT:
1135  case SIGFPE:
1136  case SIGBUS:
1137  case SIGSEGV:
1138 #ifdef SIGSYS
1139  case SIGSYS:
1140 #endif
1141  case SIGTERM:
1142  if (__kmp_debug_buf) {
1143  __kmp_dump_debug_buffer();
1144  }
1145  KMP_MB(); // Flush all pending memory write invalidates.
1146  TCW_4(__kmp_global.g.g_abort, signo);
1147  KMP_MB(); // Flush all pending memory write invalidates.
1148  TCW_4(__kmp_global.g.g_done, TRUE);
1149  KMP_MB(); // Flush all pending memory write invalidates.
1150  break;
1151  default:
1152 #ifdef KMP_DEBUG
1153  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1154 #endif
1155  break;
1156  }
1157  }
1158 } // __kmp_team_handler
1159 
1160 static void __kmp_sigaction(int signum, const struct sigaction *act,
1161  struct sigaction *oldact) {
1162  int rc = sigaction(signum, act, oldact);
1163  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1164 }
1165 
1166 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1167  int parallel_init) {
1168  KMP_MB(); // Flush all pending memory write invalidates.
1169  KB_TRACE(60,
1170  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1171  if (parallel_init) {
1172  struct sigaction new_action;
1173  struct sigaction old_action;
1174  new_action.sa_handler = handler_func;
1175  new_action.sa_flags = 0;
1176  sigfillset(&new_action.sa_mask);
1177  __kmp_sigaction(sig, &new_action, &old_action);
1178  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1179  sigaddset(&__kmp_sigset, sig);
1180  } else {
1181  // Restore/keep user's handler if one previously installed.
1182  __kmp_sigaction(sig, &old_action, NULL);
1183  }
1184  } else {
1185  // Save initial/system signal handlers to see if user handlers installed.
1186  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1187  }
1188  KMP_MB(); // Flush all pending memory write invalidates.
1189 } // __kmp_install_one_handler
1190 
1191 static void __kmp_remove_one_handler(int sig) {
1192  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1193  if (sigismember(&__kmp_sigset, sig)) {
1194  struct sigaction old;
1195  KMP_MB(); // Flush all pending memory write invalidates.
1196  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1197  if ((old.sa_handler != __kmp_team_handler) &&
1198  (old.sa_handler != __kmp_null_handler)) {
1199  // Restore the users signal handler.
1200  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1201  "restoring: sig=%d\n",
1202  sig));
1203  __kmp_sigaction(sig, &old, NULL);
1204  }
1205  sigdelset(&__kmp_sigset, sig);
1206  KMP_MB(); // Flush all pending memory write invalidates.
1207  }
1208 } // __kmp_remove_one_handler
1209 
1210 void __kmp_install_signals(int parallel_init) {
1211  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1212  if (__kmp_handle_signals || !parallel_init) {
1213  // If ! parallel_init, we do not install handlers, just save original
1214  // handlers. Let us do it even __handle_signals is 0.
1215  sigemptyset(&__kmp_sigset);
1216  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1217  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1218  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1219  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1220  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1221  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1222  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1223  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1224 #ifdef SIGSYS
1225  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1226 #endif // SIGSYS
1227  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1228 #ifdef SIGPIPE
1229  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1230 #endif // SIGPIPE
1231  }
1232 } // __kmp_install_signals
1233 
1234 void __kmp_remove_signals(void) {
1235  int sig;
1236  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1237  for (sig = 1; sig < NSIG; ++sig) {
1238  __kmp_remove_one_handler(sig);
1239  }
1240 } // __kmp_remove_signals
1241 
1242 #endif // KMP_HANDLE_SIGNALS
1243 
1244 void __kmp_enable(int new_state) {
1245 #ifdef KMP_CANCEL_THREADS
1246  int status, old_state;
1247  status = pthread_setcancelstate(new_state, &old_state);
1248  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1249  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1250 #endif
1251 }
1252 
1253 void __kmp_disable(int *old_state) {
1254 #ifdef KMP_CANCEL_THREADS
1255  int status;
1256  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1257  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1258 #endif
1259 }
1260 
1261 static void __kmp_atfork_prepare(void) {
1262  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1263  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1264 }
1265 
1266 static void __kmp_atfork_parent(void) {
1267  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1268  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1269 }
1270 
1271 /* Reset the library so execution in the child starts "all over again" with
1272  clean data structures in initial states. Don't worry about freeing memory
1273  allocated by parent, just abandon it to be safe. */
1274 static void __kmp_atfork_child(void) {
1275  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1276  /* TODO make sure this is done right for nested/sibling */
1277  // ATT: Memory leaks are here? TODO: Check it and fix.
1278  /* KMP_ASSERT( 0 ); */
1279 
1280  ++__kmp_fork_count;
1281 
1282 #if KMP_AFFINITY_SUPPORTED
1283 #if KMP_OS_LINUX
1284  // reset the affinity in the child to the initial thread
1285  // affinity in the parent
1286  kmp_set_thread_affinity_mask_initial();
1287 #endif
1288  // Set default not to bind threads tightly in the child (we’re expecting
1289  // over-subscription after the fork and this can improve things for
1290  // scripting languages that use OpenMP inside process-parallel code).
1291  __kmp_affinity_type = affinity_none;
1292 #if OMP_40_ENABLED
1293  if (__kmp_nested_proc_bind.bind_types != NULL) {
1294  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1295  }
1296 #endif // OMP_40_ENABLED
1297 #endif // KMP_AFFINITY_SUPPORTED
1298 
1299  __kmp_init_runtime = FALSE;
1300 #if KMP_USE_MONITOR
1301  __kmp_init_monitor = 0;
1302 #endif
1303  __kmp_init_parallel = FALSE;
1304  __kmp_init_middle = FALSE;
1305  __kmp_init_serial = FALSE;
1306  TCW_4(__kmp_init_gtid, FALSE);
1307  __kmp_init_common = FALSE;
1308 
1309  TCW_4(__kmp_init_user_locks, FALSE);
1310 #if !KMP_USE_DYNAMIC_LOCK
1311  __kmp_user_lock_table.used = 1;
1312  __kmp_user_lock_table.allocated = 0;
1313  __kmp_user_lock_table.table = NULL;
1314  __kmp_lock_blocks = NULL;
1315 #endif
1316 
1317  __kmp_all_nth = 0;
1318  TCW_4(__kmp_nth, 0);
1319 
1320  __kmp_thread_pool = NULL;
1321  __kmp_thread_pool_insert_pt = NULL;
1322  __kmp_team_pool = NULL;
1323 
1324  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1325  here so threadprivate doesn't use stale data */
1326  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1327  __kmp_threadpriv_cache_list));
1328 
1329  while (__kmp_threadpriv_cache_list != NULL) {
1330 
1331  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1332  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1333  &(*__kmp_threadpriv_cache_list->addr)));
1334 
1335  *__kmp_threadpriv_cache_list->addr = NULL;
1336  }
1337  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1338  }
1339 
1340  __kmp_init_runtime = FALSE;
1341 
1342  /* reset statically initialized locks */
1343  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1344  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1345  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1346  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1347 
1348 #if USE_ITT_BUILD
1349  __kmp_itt_reset(); // reset ITT's global state
1350 #endif /* USE_ITT_BUILD */
1351 
1352  /* This is necessary to make sure no stale data is left around */
1353  /* AC: customers complain that we use unsafe routines in the atfork
1354  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1355  in dynamic_link when check the presence of shared tbbmalloc library.
1356  Suggestion is to make the library initialization lazier, similar
1357  to what done for __kmpc_begin(). */
1358  // TODO: synchronize all static initializations with regular library
1359  // startup; look at kmp_global.cpp and etc.
1360  //__kmp_internal_begin ();
1361 }
1362 
1363 void __kmp_register_atfork(void) {
1364  if (__kmp_need_register_atfork) {
1365  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1366  __kmp_atfork_child);
1367  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1368  __kmp_need_register_atfork = FALSE;
1369  }
1370 }
1371 
1372 void __kmp_suspend_initialize(void) {
1373  int status;
1374  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1375  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1376  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1377  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1378 }
1379 
1380 static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1381  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1382  if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1383  /* this means we haven't initialized the suspension pthread objects for this
1384  thread in this instance of the process */
1385  int status;
1386  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1387  &__kmp_suspend_cond_attr);
1388  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1389  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1390  &__kmp_suspend_mutex_attr);
1391  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1392  *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1393  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1394  }
1395 }
1396 
1397 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1398  if (th->th.th_suspend_init_count > __kmp_fork_count) {
1399  /* this means we have initialize the suspension pthread objects for this
1400  thread in this instance of the process */
1401  int status;
1402 
1403  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1404  if (status != 0 && status != EBUSY) {
1405  KMP_SYSFAIL("pthread_cond_destroy", status);
1406  }
1407  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1408  if (status != 0 && status != EBUSY) {
1409  KMP_SYSFAIL("pthread_mutex_destroy", status);
1410  }
1411  --th->th.th_suspend_init_count;
1412  KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1413  }
1414 }
1415 
1416 // return true if lock obtained, false otherwise
1417 int __kmp_try_suspend_mx(kmp_info_t *th) {
1418  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1419 }
1420 
1421 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1422  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1423  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1424 }
1425 
1426 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1427  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1428  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1429 }
1430 
1431 /* This routine puts the calling thread to sleep after setting the
1432  sleep bit for the indicated flag variable to true. */
1433 template <class C>
1434 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1435  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1436  kmp_info_t *th = __kmp_threads[th_gtid];
1437  int status;
1438  typename C::flag_t old_spin;
1439 
1440  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1441  flag->get()));
1442 
1443  __kmp_suspend_initialize_thread(th);
1444 
1445  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1446  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1447 
1448  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1449  th_gtid, flag->get()));
1450 
1451  /* TODO: shouldn't this use release semantics to ensure that
1452  __kmp_suspend_initialize_thread gets called first? */
1453  old_spin = flag->set_sleeping();
1454 #if OMP_50_ENABLED
1455  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1456  __kmp_pause_status != kmp_soft_paused) {
1457  flag->unset_sleeping();
1458  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1459  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1460  return;
1461  }
1462 #endif
1463  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1464  " was %x\n",
1465  th_gtid, flag->get(), flag->load(), old_spin));
1466 
1467  if (flag->done_check_val(old_spin)) {
1468  old_spin = flag->unset_sleeping();
1469  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1470  "for spin(%p)\n",
1471  th_gtid, flag->get()));
1472  } else {
1473  /* Encapsulate in a loop as the documentation states that this may
1474  "with low probability" return when the condition variable has
1475  not been signaled or broadcast */
1476  int deactivated = FALSE;
1477  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1478 
1479  while (flag->is_sleeping()) {
1480 #ifdef DEBUG_SUSPEND
1481  char buffer[128];
1482  __kmp_suspend_count++;
1483  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1484  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1485  buffer);
1486 #endif
1487  // Mark the thread as no longer active (only in the first iteration of the
1488  // loop).
1489  if (!deactivated) {
1490  th->th.th_active = FALSE;
1491  if (th->th.th_active_in_pool) {
1492  th->th.th_active_in_pool = FALSE;
1493  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1494  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1495  }
1496  deactivated = TRUE;
1497  }
1498 
1499 #if USE_SUSPEND_TIMEOUT
1500  struct timespec now;
1501  struct timeval tval;
1502  int msecs;
1503 
1504  status = gettimeofday(&tval, NULL);
1505  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1506  TIMEVAL_TO_TIMESPEC(&tval, &now);
1507 
1508  msecs = (4 * __kmp_dflt_blocktime) + 200;
1509  now.tv_sec += msecs / 1000;
1510  now.tv_nsec += (msecs % 1000) * 1000;
1511 
1512  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1513  "pthread_cond_timedwait\n",
1514  th_gtid));
1515  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1516  &th->th.th_suspend_mx.m_mutex, &now);
1517 #else
1518  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1519  " pthread_cond_wait\n",
1520  th_gtid));
1521  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1522  &th->th.th_suspend_mx.m_mutex);
1523 #endif
1524 
1525  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1526  KMP_SYSFAIL("pthread_cond_wait", status);
1527  }
1528 #ifdef KMP_DEBUG
1529  if (status == ETIMEDOUT) {
1530  if (flag->is_sleeping()) {
1531  KF_TRACE(100,
1532  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1533  } else {
1534  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1535  "not set!\n",
1536  th_gtid));
1537  }
1538  } else if (flag->is_sleeping()) {
1539  KF_TRACE(100,
1540  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1541  }
1542 #endif
1543  } // while
1544 
1545  // Mark the thread as active again (if it was previous marked as inactive)
1546  if (deactivated) {
1547  th->th.th_active = TRUE;
1548  if (TCR_4(th->th.th_in_pool)) {
1549  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1550  th->th.th_active_in_pool = TRUE;
1551  }
1552  }
1553  }
1554 #ifdef DEBUG_SUSPEND
1555  {
1556  char buffer[128];
1557  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1558  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1559  buffer);
1560  }
1561 #endif
1562 
1563  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1564  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1565  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1566 }
1567 
1568 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1569  __kmp_suspend_template(th_gtid, flag);
1570 }
1571 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1572  __kmp_suspend_template(th_gtid, flag);
1573 }
1574 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1575  __kmp_suspend_template(th_gtid, flag);
1576 }
1577 
1578 /* This routine signals the thread specified by target_gtid to wake up
1579  after setting the sleep bit indicated by the flag argument to FALSE.
1580  The target thread must already have called __kmp_suspend_template() */
1581 template <class C>
1582 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1583  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1584  kmp_info_t *th = __kmp_threads[target_gtid];
1585  int status;
1586 
1587 #ifdef KMP_DEBUG
1588  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1589 #endif
1590 
1591  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1592  gtid, target_gtid));
1593  KMP_DEBUG_ASSERT(gtid != target_gtid);
1594 
1595  __kmp_suspend_initialize_thread(th);
1596 
1597  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1598  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1599 
1600  if (!flag) { // coming from __kmp_null_resume_wrapper
1601  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1602  }
1603 
1604  // First, check if the flag is null or its type has changed. If so, someone
1605  // else woke it up.
1606  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1607  // simply shows what
1608  // flag was cast to
1609  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1610  "awake: flag(%p)\n",
1611  gtid, target_gtid, NULL));
1612  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1613  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1614  return;
1615  } else { // if multiple threads are sleeping, flag should be internally
1616  // referring to a specific thread here
1617  typename C::flag_t old_spin = flag->unset_sleeping();
1618  if (!flag->is_sleeping_val(old_spin)) {
1619  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1620  "awake: flag(%p): "
1621  "%u => %u\n",
1622  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1623  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1624  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1625  return;
1626  }
1627  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1628  "sleep bit for flag's loc(%p): "
1629  "%u => %u\n",
1630  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1631  }
1632  TCW_PTR(th->th.th_sleep_loc, NULL);
1633 
1634 #ifdef DEBUG_SUSPEND
1635  {
1636  char buffer[128];
1637  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1638  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1639  target_gtid, buffer);
1640  }
1641 #endif
1642  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1643  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1644  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1645  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1646  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1647  " for T#%d\n",
1648  gtid, target_gtid));
1649 }
1650 
1651 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1652  __kmp_resume_template(target_gtid, flag);
1653 }
1654 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1655  __kmp_resume_template(target_gtid, flag);
1656 }
1657 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1658  __kmp_resume_template(target_gtid, flag);
1659 }
1660 
1661 #if KMP_USE_MONITOR
1662 void __kmp_resume_monitor() {
1663  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1664  int status;
1665 #ifdef KMP_DEBUG
1666  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1667  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1668  KMP_GTID_MONITOR));
1669  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1670 #endif
1671  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1672  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1673 #ifdef DEBUG_SUSPEND
1674  {
1675  char buffer[128];
1676  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1677  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1678  KMP_GTID_MONITOR, buffer);
1679  }
1680 #endif
1681  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1682  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1683  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1684  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1685  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1686  " for T#%d\n",
1687  gtid, KMP_GTID_MONITOR));
1688 }
1689 #endif // KMP_USE_MONITOR
1690 
1691 void __kmp_yield(int cond) {
1692  if (!cond)
1693  return;
1694 #if KMP_USE_MONITOR
1695  if (!__kmp_yielding_on)
1696  return;
1697 #else
1698  if (__kmp_yield_cycle && !KMP_YIELD_NOW())
1699  return;
1700 #endif
1701  sched_yield();
1702 }
1703 
1704 void __kmp_gtid_set_specific(int gtid) {
1705  if (__kmp_init_gtid) {
1706  int status;
1707  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1708  (void *)(intptr_t)(gtid + 1));
1709  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1710  } else {
1711  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1712  }
1713 }
1714 
1715 int __kmp_gtid_get_specific() {
1716  int gtid;
1717  if (!__kmp_init_gtid) {
1718  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1719  "KMP_GTID_SHUTDOWN\n"));
1720  return KMP_GTID_SHUTDOWN;
1721  }
1722  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1723  if (gtid == 0) {
1724  gtid = KMP_GTID_DNE;
1725  } else {
1726  gtid--;
1727  }
1728  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1729  __kmp_gtid_threadprivate_key, gtid));
1730  return gtid;
1731 }
1732 
1733 double __kmp_read_cpu_time(void) {
1734  /*clock_t t;*/
1735  struct tms buffer;
1736 
1737  /*t =*/times(&buffer);
1738 
1739  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1740 }
1741 
1742 int __kmp_read_system_info(struct kmp_sys_info *info) {
1743  int status;
1744  struct rusage r_usage;
1745 
1746  memset(info, 0, sizeof(*info));
1747 
1748  status = getrusage(RUSAGE_SELF, &r_usage);
1749  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1750 
1751  // The maximum resident set size utilized (in kilobytes)
1752  info->maxrss = r_usage.ru_maxrss;
1753  // The number of page faults serviced without any I/O
1754  info->minflt = r_usage.ru_minflt;
1755  // The number of page faults serviced that required I/O
1756  info->majflt = r_usage.ru_majflt;
1757  // The number of times a process was "swapped" out of memory
1758  info->nswap = r_usage.ru_nswap;
1759  // The number of times the file system had to perform input
1760  info->inblock = r_usage.ru_inblock;
1761  // The number of times the file system had to perform output
1762  info->oublock = r_usage.ru_oublock;
1763  // The number of times a context switch was voluntarily
1764  info->nvcsw = r_usage.ru_nvcsw;
1765  // The number of times a context switch was forced
1766  info->nivcsw = r_usage.ru_nivcsw;
1767 
1768  return (status != 0);
1769 }
1770 
1771 void __kmp_read_system_time(double *delta) {
1772  double t_ns;
1773  struct timeval tval;
1774  struct timespec stop;
1775  int status;
1776 
1777  status = gettimeofday(&tval, NULL);
1778  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1779  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1780  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1781  *delta = (t_ns * 1e-9);
1782 }
1783 
1784 void __kmp_clear_system_time(void) {
1785  struct timeval tval;
1786  int status;
1787  status = gettimeofday(&tval, NULL);
1788  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1789  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1790 }
1791 
1792 static int __kmp_get_xproc(void) {
1793 
1794  int r = 0;
1795 
1796 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1797  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1798 
1799  r = sysconf(_SC_NPROCESSORS_ONLN);
1800 
1801 #elif KMP_OS_DARWIN
1802 
1803  // Bug C77011 High "OpenMP Threads and number of active cores".
1804 
1805  // Find the number of available CPUs.
1806  kern_return_t rc;
1807  host_basic_info_data_t info;
1808  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1809  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1810  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1811  // Cannot use KA_TRACE() here because this code works before trace support
1812  // is initialized.
1813  r = info.avail_cpus;
1814  } else {
1815  KMP_WARNING(CantGetNumAvailCPU);
1816  KMP_INFORM(AssumedNumCPU);
1817  }
1818 
1819 #else
1820 
1821 #error "Unknown or unsupported OS."
1822 
1823 #endif
1824 
1825  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1826 
1827 } // __kmp_get_xproc
1828 
1829 int __kmp_read_from_file(char const *path, char const *format, ...) {
1830  int result;
1831  va_list args;
1832 
1833  va_start(args, format);
1834  FILE *f = fopen(path, "rb");
1835  if (f == NULL)
1836  return 0;
1837  result = vfscanf(f, format, args);
1838  fclose(f);
1839 
1840  return result;
1841 }
1842 
1843 void __kmp_runtime_initialize(void) {
1844  int status;
1845  pthread_mutexattr_t mutex_attr;
1846  pthread_condattr_t cond_attr;
1847 
1848  if (__kmp_init_runtime) {
1849  return;
1850  }
1851 
1852 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1853  if (!__kmp_cpuinfo.initialized) {
1854  __kmp_query_cpuid(&__kmp_cpuinfo);
1855  }
1856 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1857 
1858  __kmp_xproc = __kmp_get_xproc();
1859 
1860  if (sysconf(_SC_THREADS)) {
1861 
1862  /* Query the maximum number of threads */
1863  __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1864  if (__kmp_sys_max_nth == -1) {
1865  /* Unlimited threads for NPTL */
1866  __kmp_sys_max_nth = INT_MAX;
1867  } else if (__kmp_sys_max_nth <= 1) {
1868  /* Can't tell, just use PTHREAD_THREADS_MAX */
1869  __kmp_sys_max_nth = KMP_MAX_NTH;
1870  }
1871 
1872  /* Query the minimum stack size */
1873  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1874  if (__kmp_sys_min_stksize <= 1) {
1875  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1876  }
1877  }
1878 
1879  /* Set up minimum number of threads to switch to TLS gtid */
1880  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1881 
1882  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1883  __kmp_internal_end_dest);
1884  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1885  status = pthread_mutexattr_init(&mutex_attr);
1886  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1887  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1888  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1889  status = pthread_condattr_init(&cond_attr);
1890  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1891  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1892  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1893 #if USE_ITT_BUILD
1894  __kmp_itt_initialize();
1895 #endif /* USE_ITT_BUILD */
1896 
1897  __kmp_init_runtime = TRUE;
1898 }
1899 
1900 void __kmp_runtime_destroy(void) {
1901  int status;
1902 
1903  if (!__kmp_init_runtime) {
1904  return; // Nothing to do.
1905  }
1906 
1907 #if USE_ITT_BUILD
1908  __kmp_itt_destroy();
1909 #endif /* USE_ITT_BUILD */
1910 
1911  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1912  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1913 
1914  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1915  if (status != 0 && status != EBUSY) {
1916  KMP_SYSFAIL("pthread_mutex_destroy", status);
1917  }
1918  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1919  if (status != 0 && status != EBUSY) {
1920  KMP_SYSFAIL("pthread_cond_destroy", status);
1921  }
1922 #if KMP_AFFINITY_SUPPORTED
1923  __kmp_affinity_uninitialize();
1924 #endif
1925 
1926  __kmp_init_runtime = FALSE;
1927 }
1928 
1929 /* Put the thread to sleep for a time period */
1930 /* NOTE: not currently used anywhere */
1931 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1932 
1933 /* Calculate the elapsed wall clock time for the user */
1934 void __kmp_elapsed(double *t) {
1935  int status;
1936 #ifdef FIX_SGI_CLOCK
1937  struct timespec ts;
1938 
1939  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1940  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1941  *t =
1942  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1943 #else
1944  struct timeval tv;
1945 
1946  status = gettimeofday(&tv, NULL);
1947  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1948  *t =
1949  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1950 #endif
1951 }
1952 
1953 /* Calculate the elapsed wall clock tick for the user */
1954 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1955 
1956 /* Return the current time stamp in nsec */
1957 kmp_uint64 __kmp_now_nsec() {
1958  struct timeval t;
1959  gettimeofday(&t, NULL);
1960  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1961  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1962  return nsec;
1963 }
1964 
1965 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1966 /* Measure clock ticks per millisecond */
1967 void __kmp_initialize_system_tick() {
1968  kmp_uint64 now, nsec2, diff;
1969  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1970  kmp_uint64 nsec = __kmp_now_nsec();
1971  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1972  while ((now = __kmp_hardware_timestamp()) < goal)
1973  ;
1974  nsec2 = __kmp_now_nsec();
1975  diff = nsec2 - nsec;
1976  if (diff > 0) {
1977  kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1978  if (tpms > 0)
1979  __kmp_ticks_per_msec = tpms;
1980  }
1981 }
1982 #endif
1983 
1984 /* Determine whether the given address is mapped into the current address
1985  space. */
1986 
1987 int __kmp_is_address_mapped(void *addr) {
1988 
1989  int found = 0;
1990  int rc;
1991 
1992 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1993 
1994  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1995  ranges mapped into the address space. */
1996 
1997  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1998  FILE *file = NULL;
1999 
2000  file = fopen(name, "r");
2001  KMP_ASSERT(file != NULL);
2002 
2003  for (;;) {
2004 
2005  void *beginning = NULL;
2006  void *ending = NULL;
2007  char perms[5];
2008 
2009  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2010  if (rc == EOF) {
2011  break;
2012  }
2013  KMP_ASSERT(rc == 3 &&
2014  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2015 
2016  // Ending address is not included in the region, but beginning is.
2017  if ((addr >= beginning) && (addr < ending)) {
2018  perms[2] = 0; // 3th and 4th character does not matter.
2019  if (strcmp(perms, "rw") == 0) {
2020  // Memory we are looking for should be readable and writable.
2021  found = 1;
2022  }
2023  break;
2024  }
2025  }
2026 
2027  // Free resources.
2028  fclose(file);
2029  KMP_INTERNAL_FREE(name);
2030 
2031 #elif KMP_OS_DARWIN
2032 
2033  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2034  using vm interface. */
2035 
2036  int buffer;
2037  vm_size_t count;
2038  rc = vm_read_overwrite(
2039  mach_task_self(), // Task to read memory of.
2040  (vm_address_t)(addr), // Address to read from.
2041  1, // Number of bytes to be read.
2042  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2043  &count // Address of var to save number of read bytes in.
2044  );
2045  if (rc == 0) {
2046  // Memory successfully read.
2047  found = 1;
2048  }
2049 
2050 #elif KMP_OS_NETBSD
2051 
2052  int mib[5];
2053  mib[0] = CTL_VM;
2054  mib[1] = VM_PROC;
2055  mib[2] = VM_PROC_MAP;
2056  mib[3] = getpid();
2057  mib[4] = sizeof(struct kinfo_vmentry);
2058 
2059  size_t size;
2060  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2061  KMP_ASSERT(!rc);
2062  KMP_ASSERT(size);
2063 
2064  size = size * 4 / 3;
2065  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2066  KMP_ASSERT(kiv);
2067 
2068  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2069  KMP_ASSERT(!rc);
2070  KMP_ASSERT(size);
2071 
2072  for (size_t i = 0; i < size; i++) {
2073  if (kiv[i].kve_start >= (uint64_t)addr &&
2074  kiv[i].kve_end <= (uint64_t)addr) {
2075  found = 1;
2076  break;
2077  }
2078  }
2079  KMP_INTERNAL_FREE(kiv);
2080 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2081 
2082  // FIXME(DragonFly, OpenBSD): Implement this
2083  found = 1;
2084 
2085 #else
2086 
2087 #error "Unknown or unsupported OS"
2088 
2089 #endif
2090 
2091  return found;
2092 
2093 } // __kmp_is_address_mapped
2094 
2095 #ifdef USE_LOAD_BALANCE
2096 
2097 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2098 
2099 // The function returns the rounded value of the system load average
2100 // during given time interval which depends on the value of
2101 // __kmp_load_balance_interval variable (default is 60 sec, other values
2102 // may be 300 sec or 900 sec).
2103 // It returns -1 in case of error.
2104 int __kmp_get_load_balance(int max) {
2105  double averages[3];
2106  int ret_avg = 0;
2107 
2108  int res = getloadavg(averages, 3);
2109 
2110  // Check __kmp_load_balance_interval to determine which of averages to use.
2111  // getloadavg() may return the number of samples less than requested that is
2112  // less than 3.
2113  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2114  ret_avg = averages[0]; // 1 min
2115  } else if ((__kmp_load_balance_interval >= 180 &&
2116  __kmp_load_balance_interval < 600) &&
2117  (res >= 2)) {
2118  ret_avg = averages[1]; // 5 min
2119  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2120  ret_avg = averages[2]; // 15 min
2121  } else { // Error occurred
2122  return -1;
2123  }
2124 
2125  return ret_avg;
2126 }
2127 
2128 #else // Linux* OS
2129 
2130 // The fuction returns number of running (not sleeping) threads, or -1 in case
2131 // of error. Error could be reported if Linux* OS kernel too old (without
2132 // "/proc" support). Counting running threads stops if max running threads
2133 // encountered.
2134 int __kmp_get_load_balance(int max) {
2135  static int permanent_error = 0;
2136  static int glb_running_threads = 0; // Saved count of the running threads for
2137  // the thread balance algortihm
2138  static double glb_call_time = 0; /* Thread balance algorithm call time */
2139 
2140  int running_threads = 0; // Number of running threads in the system.
2141 
2142  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2143  struct dirent *proc_entry = NULL;
2144 
2145  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2146  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2147  struct dirent *task_entry = NULL;
2148  int task_path_fixed_len;
2149 
2150  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2151  int stat_file = -1;
2152  int stat_path_fixed_len;
2153 
2154  int total_processes = 0; // Total number of processes in system.
2155  int total_threads = 0; // Total number of threads in system.
2156 
2157  double call_time = 0.0;
2158 
2159  __kmp_str_buf_init(&task_path);
2160  __kmp_str_buf_init(&stat_path);
2161 
2162  __kmp_elapsed(&call_time);
2163 
2164  if (glb_call_time &&
2165  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2166  running_threads = glb_running_threads;
2167  goto finish;
2168  }
2169 
2170  glb_call_time = call_time;
2171 
2172  // Do not spend time on scanning "/proc/" if we have a permanent error.
2173  if (permanent_error) {
2174  running_threads = -1;
2175  goto finish;
2176  }
2177 
2178  if (max <= 0) {
2179  max = INT_MAX;
2180  }
2181 
2182  // Open "/proc/" directory.
2183  proc_dir = opendir("/proc");
2184  if (proc_dir == NULL) {
2185  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2186  // error now and in subsequent calls.
2187  running_threads = -1;
2188  permanent_error = 1;
2189  goto finish;
2190  }
2191 
2192  // Initialize fixed part of task_path. This part will not change.
2193  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2194  task_path_fixed_len = task_path.used; // Remember number of used characters.
2195 
2196  proc_entry = readdir(proc_dir);
2197  while (proc_entry != NULL) {
2198  // Proc entry is a directory and name starts with a digit. Assume it is a
2199  // process' directory.
2200  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2201 
2202  ++total_processes;
2203  // Make sure init process is the very first in "/proc", so we can replace
2204  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2205  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2206  // true (where "=>" is implication). Since C++ does not have => operator,
2207  // let us replace it with its equivalent: a => b == ! a || b.
2208  KMP_DEBUG_ASSERT(total_processes != 1 ||
2209  strcmp(proc_entry->d_name, "1") == 0);
2210 
2211  // Construct task_path.
2212  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2213  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2214  KMP_STRLEN(proc_entry->d_name));
2215  __kmp_str_buf_cat(&task_path, "/task", 5);
2216 
2217  task_dir = opendir(task_path.str);
2218  if (task_dir == NULL) {
2219  // Process can finish between reading "/proc/" directory entry and
2220  // opening process' "task/" directory. So, in general case we should not
2221  // complain, but have to skip this process and read the next one. But on
2222  // systems with no "task/" support we will spend lot of time to scan
2223  // "/proc/" tree again and again without any benefit. "init" process
2224  // (its pid is 1) should exist always, so, if we cannot open
2225  // "/proc/1/task/" directory, it means "task/" is not supported by
2226  // kernel. Report an error now and in the future.
2227  if (strcmp(proc_entry->d_name, "1") == 0) {
2228  running_threads = -1;
2229  permanent_error = 1;
2230  goto finish;
2231  }
2232  } else {
2233  // Construct fixed part of stat file path.
2234  __kmp_str_buf_clear(&stat_path);
2235  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2236  __kmp_str_buf_cat(&stat_path, "/", 1);
2237  stat_path_fixed_len = stat_path.used;
2238 
2239  task_entry = readdir(task_dir);
2240  while (task_entry != NULL) {
2241  // It is a directory and name starts with a digit.
2242  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2243  ++total_threads;
2244 
2245  // Consruct complete stat file path. Easiest way would be:
2246  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2247  // task_entry->d_name );
2248  // but seriae of __kmp_str_buf_cat works a bit faster.
2249  stat_path.used =
2250  stat_path_fixed_len; // Reset stat path to its fixed part.
2251  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2252  KMP_STRLEN(task_entry->d_name));
2253  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2254 
2255  // Note: Low-level API (open/read/close) is used. High-level API
2256  // (fopen/fclose) works ~ 30 % slower.
2257  stat_file = open(stat_path.str, O_RDONLY);
2258  if (stat_file == -1) {
2259  // We cannot report an error because task (thread) can terminate
2260  // just before reading this file.
2261  } else {
2262  /* Content of "stat" file looks like:
2263  24285 (program) S ...
2264 
2265  It is a single line (if program name does not include funny
2266  symbols). First number is a thread id, then name of executable
2267  file name in paretheses, then state of the thread. We need just
2268  thread state.
2269 
2270  Good news: Length of program name is 15 characters max. Longer
2271  names are truncated.
2272 
2273  Thus, we need rather short buffer: 15 chars for program name +
2274  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2275 
2276  Bad news: Program name may contain special symbols like space,
2277  closing parenthesis, or even new line. This makes parsing
2278  "stat" file not 100 % reliable. In case of fanny program names
2279  parsing may fail (report incorrect thread state).
2280 
2281  Parsing "status" file looks more promissing (due to different
2282  file structure and escaping special symbols) but reading and
2283  parsing of "status" file works slower.
2284  -- ln
2285  */
2286  char buffer[65];
2287  int len;
2288  len = read(stat_file, buffer, sizeof(buffer) - 1);
2289  if (len >= 0) {
2290  buffer[len] = 0;
2291  // Using scanf:
2292  // sscanf( buffer, "%*d (%*s) %c ", & state );
2293  // looks very nice, but searching for a closing parenthesis
2294  // works a bit faster.
2295  char *close_parent = strstr(buffer, ") ");
2296  if (close_parent != NULL) {
2297  char state = *(close_parent + 2);
2298  if (state == 'R') {
2299  ++running_threads;
2300  if (running_threads >= max) {
2301  goto finish;
2302  }
2303  }
2304  }
2305  }
2306  close(stat_file);
2307  stat_file = -1;
2308  }
2309  }
2310  task_entry = readdir(task_dir);
2311  }
2312  closedir(task_dir);
2313  task_dir = NULL;
2314  }
2315  }
2316  proc_entry = readdir(proc_dir);
2317  }
2318 
2319  // There _might_ be a timing hole where the thread executing this
2320  // code get skipped in the load balance, and running_threads is 0.
2321  // Assert in the debug builds only!!!
2322  KMP_DEBUG_ASSERT(running_threads > 0);
2323  if (running_threads <= 0) {
2324  running_threads = 1;
2325  }
2326 
2327 finish: // Clean up and exit.
2328  if (proc_dir != NULL) {
2329  closedir(proc_dir);
2330  }
2331  __kmp_str_buf_free(&task_path);
2332  if (task_dir != NULL) {
2333  closedir(task_dir);
2334  }
2335  __kmp_str_buf_free(&stat_path);
2336  if (stat_file != -1) {
2337  close(stat_file);
2338  }
2339 
2340  glb_running_threads = running_threads;
2341 
2342  return running_threads;
2343 
2344 } // __kmp_get_load_balance
2345 
2346 #endif // KMP_OS_DARWIN
2347 
2348 #endif // USE_LOAD_BALANCE
2349 
2350 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2351  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2352 
2353 // we really only need the case with 1 argument, because CLANG always build
2354 // a struct of pointers to shared variables referenced in the outlined function
2355 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2356  void *p_argv[]
2357 #if OMPT_SUPPORT
2358  ,
2359  void **exit_frame_ptr
2360 #endif
2361  ) {
2362 #if OMPT_SUPPORT
2363  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2364 #endif
2365 
2366  switch (argc) {
2367  default:
2368  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2369  fflush(stderr);
2370  exit(-1);
2371  case 0:
2372  (*pkfn)(&gtid, &tid);
2373  break;
2374  case 1:
2375  (*pkfn)(&gtid, &tid, p_argv[0]);
2376  break;
2377  case 2:
2378  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2379  break;
2380  case 3:
2381  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2382  break;
2383  case 4:
2384  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2385  break;
2386  case 5:
2387  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2388  break;
2389  case 6:
2390  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2391  p_argv[5]);
2392  break;
2393  case 7:
2394  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2395  p_argv[5], p_argv[6]);
2396  break;
2397  case 8:
2398  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2399  p_argv[5], p_argv[6], p_argv[7]);
2400  break;
2401  case 9:
2402  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2403  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2404  break;
2405  case 10:
2406  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2407  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2408  break;
2409  case 11:
2410  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2411  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2412  break;
2413  case 12:
2414  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2415  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2416  p_argv[11]);
2417  break;
2418  case 13:
2419  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2420  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2421  p_argv[11], p_argv[12]);
2422  break;
2423  case 14:
2424  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2425  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2426  p_argv[11], p_argv[12], p_argv[13]);
2427  break;
2428  case 15:
2429  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2430  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2431  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2432  break;
2433  }
2434 
2435 #if OMPT_SUPPORT
2436  *exit_frame_ptr = 0;
2437 #endif
2438 
2439  return 1;
2440 }
2441 
2442 #endif
2443 
2444 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the paritioned timers to begin with name.
Definition: kmp_stats.h:918