LLVM OpenMP* Runtime Library
z_Windows_NT_util.cpp
1 /*
2  * z_Windows_NT_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19 
20 /* This code is related to NtQuerySystemInformation() function. This function
21  is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22  number of running threads in the system. */
23 
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26 #include <psapi.h>
27 #ifdef _MSC_VER
28 #pragma comment(lib, "psapi.lib")
29 #endif
30 
31 enum SYSTEM_INFORMATION_CLASS {
32  SystemProcessInformation = 5
33 }; // SYSTEM_INFORMATION_CLASS
34 
35 struct CLIENT_ID {
36  HANDLE UniqueProcess;
37  HANDLE UniqueThread;
38 }; // struct CLIENT_ID
39 
40 enum THREAD_STATE {
41  StateInitialized,
42  StateReady,
43  StateRunning,
44  StateStandby,
45  StateTerminated,
46  StateWait,
47  StateTransition,
48  StateUnknown
49 }; // enum THREAD_STATE
50 
51 struct VM_COUNTERS {
52  SIZE_T PeakVirtualSize;
53  SIZE_T VirtualSize;
54  ULONG PageFaultCount;
55  SIZE_T PeakWorkingSetSize;
56  SIZE_T WorkingSetSize;
57  SIZE_T QuotaPeakPagedPoolUsage;
58  SIZE_T QuotaPagedPoolUsage;
59  SIZE_T QuotaPeakNonPagedPoolUsage;
60  SIZE_T QuotaNonPagedPoolUsage;
61  SIZE_T PagefileUsage;
62  SIZE_T PeakPagefileUsage;
63  SIZE_T PrivatePageCount;
64 }; // struct VM_COUNTERS
65 
66 struct SYSTEM_THREAD {
67  LARGE_INTEGER KernelTime;
68  LARGE_INTEGER UserTime;
69  LARGE_INTEGER CreateTime;
70  ULONG WaitTime;
71  LPVOID StartAddress;
72  CLIENT_ID ClientId;
73  DWORD Priority;
74  LONG BasePriority;
75  ULONG ContextSwitchCount;
76  THREAD_STATE State;
77  ULONG WaitReason;
78 }; // SYSTEM_THREAD
79 
80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
81 #if KMP_ARCH_X86 || KMP_ARCH_ARM
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
84 #else
85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
87 #endif
88 
89 struct SYSTEM_PROCESS_INFORMATION {
90  ULONG NextEntryOffset;
91  ULONG NumberOfThreads;
92  LARGE_INTEGER Reserved[3];
93  LARGE_INTEGER CreateTime;
94  LARGE_INTEGER UserTime;
95  LARGE_INTEGER KernelTime;
96  UNICODE_STRING ImageName;
97  DWORD BasePriority;
98  HANDLE ProcessId;
99  HANDLE ParentProcessId;
100  ULONG HandleCount;
101  ULONG Reserved2[2];
102  VM_COUNTERS VMCounters;
103  IO_COUNTERS IOCounters;
104  SYSTEM_THREAD Threads[1];
105 }; // SYSTEM_PROCESS_INFORMATION
106 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
107 
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
111 #if KMP_ARCH_X86 || KMP_ARCH_ARM
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
117 #else
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
123 #endif
124 
125 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
126  PVOID, ULONG, PULONG);
127 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
128 
129 HMODULE ntdll = NULL;
130 
131 /* End of NtQuerySystemInformation()-related code */
132 
133 static HMODULE kernel32 = NULL;
134 
135 #if KMP_HANDLE_SIGNALS
136 typedef void (*sig_func_t)(int);
137 static sig_func_t __kmp_sighldrs[NSIG];
138 static int __kmp_siginstalled[NSIG];
139 #endif
140 
141 #if KMP_USE_MONITOR
142 static HANDLE __kmp_monitor_ev;
143 #endif
144 static kmp_int64 __kmp_win32_time;
145 double __kmp_win32_tick;
146 
147 int __kmp_init_runtime = FALSE;
148 CRITICAL_SECTION __kmp_win32_section;
149 
150 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
151  InitializeCriticalSection(&mx->cs);
152 #if USE_ITT_BUILD
153  __kmp_itt_system_object_created(&mx->cs, "Critical Section");
154 #endif /* USE_ITT_BUILD */
155 }
156 
157 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
158  DeleteCriticalSection(&mx->cs);
159 }
160 
161 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
162  EnterCriticalSection(&mx->cs);
163 }
164 
165 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
166  return TryEnterCriticalSection(&mx->cs);
167 }
168 
169 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
170  LeaveCriticalSection(&mx->cs);
171 }
172 
173 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
174  cv->waiters_count_ = 0;
175  cv->wait_generation_count_ = 0;
176  cv->release_count_ = 0;
177 
178  /* Initialize the critical section */
179  __kmp_win32_mutex_init(&cv->waiters_count_lock_);
180 
181  /* Create a manual-reset event. */
182  cv->event_ = CreateEvent(NULL, // no security
183  TRUE, // manual-reset
184  FALSE, // non-signaled initially
185  NULL); // unnamed
186 #if USE_ITT_BUILD
187  __kmp_itt_system_object_created(cv->event_, "Event");
188 #endif /* USE_ITT_BUILD */
189 }
190 
191 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
192  __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
193  __kmp_free_handle(cv->event_);
194  memset(cv, '\0', sizeof(*cv));
195 }
196 
197 /* TODO associate cv with a team instead of a thread so as to optimize
198  the case where we wake up a whole team */
199 
200 template <class C>
201 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
202  kmp_info_t *th, C *flag) {
203  int my_generation;
204  int last_waiter;
205 
206  /* Avoid race conditions */
207  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
208 
209  /* Increment count of waiters */
210  cv->waiters_count_++;
211 
212  /* Store current generation in our activation record. */
213  my_generation = cv->wait_generation_count_;
214 
215  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
216  __kmp_win32_mutex_unlock(mx);
217 
218  for (;;) {
219  int wait_done = 0;
220  DWORD res, timeout = 5000; // just tried to quess an appropriate number
221  /* Wait until the event is signaled */
222  res = WaitForSingleObject(cv->event_, timeout);
223 
224  if (res == WAIT_OBJECT_0) {
225  // event signaled
226  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
227  /* Exit the loop when the <cv->event_> is signaled and there are still
228  waiting threads from this <wait_generation> that haven't been released
229  from this wait yet. */
230  wait_done = (cv->release_count_ > 0) &&
231  (cv->wait_generation_count_ != my_generation);
232  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
233  } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
234  // check if the flag and cv counters are in consistent state
235  // as MS sent us debug dump whith inconsistent state of data
236  __kmp_win32_mutex_lock(mx);
237  typename C::flag_t old_f = flag->set_sleeping();
238  if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
239  __kmp_win32_mutex_unlock(mx);
240  continue;
241  }
242  // condition fulfilled, exiting
243  flag->unset_sleeping();
244  TCW_PTR(th->th.th_sleep_loc, NULL);
245  th->th.th_sleep_loc_type = flag_unset;
246  KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
247  "fulfilled: flag's loc(%p): %u\n",
248  flag->get(), (unsigned int)flag->load()));
249 
250  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
251  KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
252  cv->release_count_ = cv->waiters_count_;
253  cv->wait_generation_count_++;
254  wait_done = 1;
255  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
256 
257  __kmp_win32_mutex_unlock(mx);
258  }
259  /* there used to be a semicolon after the if statement, it looked like a
260  bug, so i removed it */
261  if (wait_done)
262  break;
263  }
264 
265  __kmp_win32_mutex_lock(mx);
266  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
267 
268  cv->waiters_count_--;
269  cv->release_count_--;
270 
271  last_waiter = (cv->release_count_ == 0);
272 
273  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
274 
275  if (last_waiter) {
276  /* We're the last waiter to be notified, so reset the manual event. */
277  ResetEvent(cv->event_);
278  }
279 }
280 
281 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
282  __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
283 
284  if (cv->waiters_count_ > 0) {
285  SetEvent(cv->event_);
286  /* Release all the threads in this generation. */
287 
288  cv->release_count_ = cv->waiters_count_;
289 
290  /* Start a new generation. */
291  cv->wait_generation_count_++;
292  }
293 
294  __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
295 }
296 
297 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
298  __kmp_win32_cond_broadcast(cv);
299 }
300 
301 void __kmp_enable(int new_state) {
302  if (__kmp_init_runtime)
303  LeaveCriticalSection(&__kmp_win32_section);
304 }
305 
306 void __kmp_disable(int *old_state) {
307  *old_state = 0;
308 
309  if (__kmp_init_runtime)
310  EnterCriticalSection(&__kmp_win32_section);
311 }
312 
313 void __kmp_suspend_initialize(void) { /* do nothing */
314 }
315 
316 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
317  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
318  int new_value = TRUE;
319  // Return if already initialized
320  if (old_value == new_value)
321  return;
322  // Wait, then return if being initialized
323  if (old_value == -1 ||
324  !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
325  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
326  KMP_CPU_PAUSE();
327  }
328  } else {
329  // Claim to be the initializer and do initializations
330  __kmp_win32_cond_init(&th->th.th_suspend_cv);
331  __kmp_win32_mutex_init(&th->th.th_suspend_mx);
332  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
333  }
334 }
335 
336 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
337  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
338  /* this means we have initialize the suspension pthread objects for this
339  thread in this instance of the process */
340  __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
341  __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
342  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
343  }
344 }
345 
346 int __kmp_try_suspend_mx(kmp_info_t *th) {
347  return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
348 }
349 
350 void __kmp_lock_suspend_mx(kmp_info_t *th) {
351  __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
352 }
353 
354 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
355  __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
356 }
357 
358 /* This routine puts the calling thread to sleep after setting the
359  sleep bit for the indicated flag variable to true. */
360 template <class C>
361 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
362  kmp_info_t *th = __kmp_threads[th_gtid];
363  typename C::flag_t old_spin;
364 
365  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
366  th_gtid, flag->get()));
367 
368  __kmp_suspend_initialize_thread(th);
369  __kmp_lock_suspend_mx(th);
370 
371  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
372  " loc(%p)\n",
373  th_gtid, flag->get()));
374 
375  /* TODO: shouldn't this use release semantics to ensure that
376  __kmp_suspend_initialize_thread gets called first? */
377  old_spin = flag->set_sleeping();
378  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
379  th->th.th_sleep_loc_type = flag->get_type();
380  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
381  __kmp_pause_status != kmp_soft_paused) {
382  flag->unset_sleeping();
383  TCW_PTR(th->th.th_sleep_loc, NULL);
384  th->th.th_sleep_loc_type = flag_unset;
385  __kmp_unlock_suspend_mx(th);
386  return;
387  }
388 
389  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
390  " loc(%p)==%u\n",
391  th_gtid, flag->get(), (unsigned int)flag->load()));
392 
393  if (flag->done_check_val(old_spin) || flag->done_check()) {
394  flag->unset_sleeping();
395  TCW_PTR(th->th.th_sleep_loc, NULL);
396  th->th.th_sleep_loc_type = flag_unset;
397  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
398  "for flag's loc(%p)\n",
399  th_gtid, flag->get()));
400  } else {
401 #ifdef DEBUG_SUSPEND
402  __kmp_suspend_count++;
403 #endif
404  /* Encapsulate in a loop as the documentation states that this may "with
405  low probability" return when the condition variable has not been signaled
406  or broadcast */
407  int deactivated = FALSE;
408 
409  while (flag->is_sleeping()) {
410  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
411  "kmp_win32_cond_wait()\n",
412  th_gtid));
413  // Mark the thread as no longer active (only in the first iteration of the
414  // loop).
415  if (!deactivated) {
416  th->th.th_active = FALSE;
417  if (th->th.th_active_in_pool) {
418  th->th.th_active_in_pool = FALSE;
419  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
420  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
421  }
422  deactivated = TRUE;
423  }
424 
425  KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
426  KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type());
427 
428  __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
429  flag);
430 
431 #ifdef KMP_DEBUG
432  if (flag->is_sleeping()) {
433  KF_TRACE(100,
434  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
435  }
436 #endif /* KMP_DEBUG */
437 
438  } // while
439 
440  // We may have had the loop variable set before entering the loop body;
441  // so we need to reset sleep_loc.
442  TCW_PTR(th->th.th_sleep_loc, NULL);
443  th->th.th_sleep_loc_type = flag_unset;
444 
445  KMP_DEBUG_ASSERT(!flag->is_sleeping());
446  KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
447 
448  // Mark the thread as active again (if it was previous marked as inactive)
449  if (deactivated) {
450  th->th.th_active = TRUE;
451  if (TCR_4(th->th.th_in_pool)) {
452  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
453  th->th.th_active_in_pool = TRUE;
454  }
455  }
456  }
457 
458  __kmp_unlock_suspend_mx(th);
459  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
460 }
461 
462 template <bool C, bool S>
463 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
464  __kmp_suspend_template(th_gtid, flag);
465 }
466 template <bool C, bool S>
467 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
468  __kmp_suspend_template(th_gtid, flag);
469 }
470 template <bool C, bool S>
471 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
472  __kmp_suspend_template(th_gtid, flag);
473 }
474 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
475  __kmp_suspend_template(th_gtid, flag);
476 }
477 
478 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
479 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
480 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
481 template void
482 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
483 template void
484 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
485 
486 /* This routine signals the thread specified by target_gtid to wake up
487  after setting the sleep bit indicated by the flag argument to FALSE */
488 template <class C>
489 static inline void __kmp_resume_template(int target_gtid, C *flag) {
490  kmp_info_t *th = __kmp_threads[target_gtid];
491 
492 #ifdef KMP_DEBUG
493  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
494 #endif
495 
496  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
497  gtid, target_gtid));
498 
499  __kmp_suspend_initialize_thread(th);
500  __kmp_lock_suspend_mx(th);
501 
502  if (!flag || flag != th->th.th_sleep_loc) {
503  // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
504  // different location; wake up at new location
505  flag = (C *)th->th.th_sleep_loc;
506  }
507 
508  // First, check if the flag is null or its type has changed. If so, someone
509  // else woke it up.
510  if (!flag || flag->get_type() != th->th.th_sleep_loc_type) {
511  // simply shows what flag was cast to
512  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
513  "awake: flag's loc(%p)\n",
514  gtid, target_gtid, NULL));
515  __kmp_unlock_suspend_mx(th);
516  return;
517  } else {
518  if (!flag->is_sleeping()) {
519  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
520  "awake: flag's loc(%p): %u\n",
521  gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
522  __kmp_unlock_suspend_mx(th);
523  return;
524  }
525  }
526  KMP_DEBUG_ASSERT(flag);
527  flag->unset_sleeping();
528  TCW_PTR(th->th.th_sleep_loc, NULL);
529  th->th.th_sleep_loc_type = flag_unset;
530 
531  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
532  "bit for flag's loc(%p)\n",
533  gtid, target_gtid, flag->get()));
534 
535  __kmp_win32_cond_signal(&th->th.th_suspend_cv);
536  __kmp_unlock_suspend_mx(th);
537 
538  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
539  " for T#%d\n",
540  gtid, target_gtid));
541 }
542 
543 template <bool C, bool S>
544 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
545  __kmp_resume_template(target_gtid, flag);
546 }
547 template <bool C, bool S>
548 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
549  __kmp_resume_template(target_gtid, flag);
550 }
551 template <bool C, bool S>
552 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
553  __kmp_resume_template(target_gtid, flag);
554 }
555 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
556  __kmp_resume_template(target_gtid, flag);
557 }
558 
559 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
560 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
561 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
562 template void
563 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
564 
565 void __kmp_yield() { Sleep(0); }
566 
567 void __kmp_gtid_set_specific(int gtid) {
568  if (__kmp_init_gtid) {
569  KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
570  __kmp_gtid_threadprivate_key));
571  kmp_intptr_t g = (kmp_intptr_t)gtid;
572  if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1)))
573  KMP_FATAL(TLSSetValueFailed);
574  } else {
575  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
576  }
577 }
578 
579 int __kmp_gtid_get_specific() {
580  int gtid;
581  if (!__kmp_init_gtid) {
582  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
583  "KMP_GTID_SHUTDOWN\n"));
584  return KMP_GTID_SHUTDOWN;
585  }
586  gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
587  if (gtid == 0) {
588  gtid = KMP_GTID_DNE;
589  } else {
590  gtid--;
591  }
592  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
593  __kmp_gtid_threadprivate_key, gtid));
594  return gtid;
595 }
596 
597 void __kmp_affinity_bind_thread(int proc) {
598  if (__kmp_num_proc_groups > 1) {
599  // Form the GROUP_AFFINITY struct directly, rather than filling
600  // out a bit vector and calling __kmp_set_system_affinity().
601  GROUP_AFFINITY ga;
602  KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
603  sizeof(DWORD_PTR))));
604  ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
605  ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
606  ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
607 
608  KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
609  if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
610  DWORD error = GetLastError();
611  // AC: continue silently if not verbose
612  if (__kmp_affinity.flags.verbose) {
613  kmp_msg_t err_code = KMP_ERR(error);
614  __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
615  __kmp_msg_null);
616  if (__kmp_generate_warnings == kmp_warnings_off) {
617  __kmp_str_free(&err_code.str);
618  }
619  }
620  }
621  } else {
622  kmp_affin_mask_t *mask;
623  KMP_CPU_ALLOC_ON_STACK(mask);
624  KMP_CPU_ZERO(mask);
625  KMP_CPU_SET(proc, mask);
626  __kmp_set_system_affinity(mask, TRUE);
627  KMP_CPU_FREE_FROM_STACK(mask);
628  }
629 }
630 
631 void __kmp_affinity_determine_capable(const char *env_var) {
632  // All versions of Windows* OS (since Win '95) support
633  // SetThreadAffinityMask().
634 
635 #if KMP_GROUP_AFFINITY
636  KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
637 #else
638  KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
639 #endif
640 
641  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
642  "Windows* OS affinity interface functional (mask size = "
643  "%" KMP_SIZE_T_SPEC ").\n",
644  __kmp_affin_mask_size));
645 }
646 
647 double __kmp_read_cpu_time(void) {
648  FILETIME CreationTime, ExitTime, KernelTime, UserTime;
649  int status;
650  double cpu_time;
651 
652  cpu_time = 0;
653 
654  status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
655  &KernelTime, &UserTime);
656 
657  if (status) {
658  double sec = 0;
659 
660  sec += KernelTime.dwHighDateTime;
661  sec += UserTime.dwHighDateTime;
662 
663  /* Shift left by 32 bits */
664  sec *= (double)(1 << 16) * (double)(1 << 16);
665 
666  sec += KernelTime.dwLowDateTime;
667  sec += UserTime.dwLowDateTime;
668 
669  cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
670  }
671 
672  return cpu_time;
673 }
674 
675 int __kmp_read_system_info(struct kmp_sys_info *info) {
676  info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
677  info->minflt = 0; /* the number of page faults serviced without any I/O */
678  info->majflt = 0; /* the number of page faults serviced that required I/O */
679  info->nswap = 0; // the number of times a process was "swapped" out of memory
680  info->inblock = 0; // the number of times the file system had to perform input
681  info->oublock = 0; // number of times the file system had to perform output
682  info->nvcsw = 0; /* the number of times a context switch was voluntarily */
683  info->nivcsw = 0; /* the number of times a context switch was forced */
684 
685  return 1;
686 }
687 
688 void __kmp_runtime_initialize(void) {
689  SYSTEM_INFO info;
690  kmp_str_buf_t path;
691  UINT path_size;
692 
693  if (__kmp_init_runtime) {
694  return;
695  }
696 
697 #if KMP_DYNAMIC_LIB
698  /* Pin dynamic library for the lifetime of application */
699  {
700  // First, turn off error message boxes
701  UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
702  HMODULE h;
703  BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
704  GET_MODULE_HANDLE_EX_FLAG_PIN,
705  (LPCTSTR)&__kmp_serial_initialize, &h);
706  (void)ret;
707  KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
708  SetErrorMode(err_mode); // Restore error mode
709  KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
710  }
711 #endif
712 
713  InitializeCriticalSection(&__kmp_win32_section);
714 #if USE_ITT_BUILD
715  __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
716 #endif /* USE_ITT_BUILD */
717  __kmp_initialize_system_tick();
718 
719 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
720  if (!__kmp_cpuinfo.initialized) {
721  __kmp_query_cpuid(&__kmp_cpuinfo);
722  }
723 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
724 
725 /* Set up minimum number of threads to switch to TLS gtid */
726 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
727  // Windows* OS, static library.
728  /* New thread may use stack space previously used by another thread,
729  currently terminated. On Windows* OS, in case of static linking, we do not
730  know the moment of thread termination, and our structures (__kmp_threads
731  and __kmp_root arrays) are still keep info about dead threads. This leads
732  to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
733  (by searching through stack addresses of all known threads) for
734  unregistered foreign tread.
735 
736  Setting __kmp_tls_gtid_min to 0 workarounds this problem:
737  __kmp_get_global_thread_id() does not search through stacks, but get gtid
738  from TLS immediately.
739  --ln
740  */
741  __kmp_tls_gtid_min = 0;
742 #else
743  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
744 #endif
745 
746  /* for the static library */
747  if (!__kmp_gtid_threadprivate_key) {
748  __kmp_gtid_threadprivate_key = TlsAlloc();
749  if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
750  KMP_FATAL(TLSOutOfIndexes);
751  }
752  }
753 
754  // Load ntdll.dll.
755  /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
756  (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
757  have to specify full path to the library. */
758  __kmp_str_buf_init(&path);
759  path_size = GetSystemDirectory(path.str, path.size);
760  KMP_DEBUG_ASSERT(path_size > 0);
761  if (path_size >= path.size) {
762  // Buffer is too short. Expand the buffer and try again.
763  __kmp_str_buf_reserve(&path, path_size);
764  path_size = GetSystemDirectory(path.str, path.size);
765  KMP_DEBUG_ASSERT(path_size > 0);
766  }
767  if (path_size > 0 && path_size < path.size) {
768  // Now we have system directory name in the buffer.
769  // Append backslash and name of dll to form full path,
770  path.used = path_size;
771  __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
772 
773  // Now load ntdll using full path.
774  ntdll = GetModuleHandle(path.str);
775  }
776 
777  KMP_DEBUG_ASSERT(ntdll != NULL);
778  if (ntdll != NULL) {
779  NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
780  ntdll, "NtQuerySystemInformation");
781  }
782  KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
783 
784 #if KMP_GROUP_AFFINITY
785  // Load kernel32.dll.
786  // Same caveat - must use full system path name.
787  if (path_size > 0 && path_size < path.size) {
788  // Truncate the buffer back to just the system path length,
789  // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
790  path.used = path_size;
791  __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
792 
793  // Load kernel32.dll using full path.
794  kernel32 = GetModuleHandle(path.str);
795  KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
796 
797  // Load the function pointers to kernel32.dll routines
798  // that may or may not exist on this system.
799  if (kernel32 != NULL) {
800  __kmp_GetActiveProcessorCount =
801  (kmp_GetActiveProcessorCount_t)GetProcAddress(
802  kernel32, "GetActiveProcessorCount");
803  __kmp_GetActiveProcessorGroupCount =
804  (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
805  kernel32, "GetActiveProcessorGroupCount");
806  __kmp_GetThreadGroupAffinity =
807  (kmp_GetThreadGroupAffinity_t)GetProcAddress(
808  kernel32, "GetThreadGroupAffinity");
809  __kmp_SetThreadGroupAffinity =
810  (kmp_SetThreadGroupAffinity_t)GetProcAddress(
811  kernel32, "SetThreadGroupAffinity");
812 
813  KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
814  " = %p\n",
815  __kmp_GetActiveProcessorCount));
816  KA_TRACE(10, ("__kmp_runtime_initialize: "
817  "__kmp_GetActiveProcessorGroupCount = %p\n",
818  __kmp_GetActiveProcessorGroupCount));
819  KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
820  " = %p\n",
821  __kmp_GetThreadGroupAffinity));
822  KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
823  " = %p\n",
824  __kmp_SetThreadGroupAffinity));
825  KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
826  sizeof(kmp_affin_mask_t)));
827 
828  // See if group affinity is supported on this system.
829  // If so, calculate the #groups and #procs.
830  //
831  // Group affinity was introduced with Windows* 7 OS and
832  // Windows* Server 2008 R2 OS.
833  if ((__kmp_GetActiveProcessorCount != NULL) &&
834  (__kmp_GetActiveProcessorGroupCount != NULL) &&
835  (__kmp_GetThreadGroupAffinity != NULL) &&
836  (__kmp_SetThreadGroupAffinity != NULL) &&
837  ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
838  1)) {
839  // Calculate the total number of active OS procs.
840  int i;
841 
842  KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
843  " detected\n",
844  __kmp_num_proc_groups));
845 
846  __kmp_xproc = 0;
847 
848  for (i = 0; i < __kmp_num_proc_groups; i++) {
849  DWORD size = __kmp_GetActiveProcessorCount(i);
850  __kmp_xproc += size;
851  KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
852  i, size));
853  }
854  } else {
855  KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
856  " detected\n",
857  __kmp_num_proc_groups));
858  }
859  }
860  }
861  if (__kmp_num_proc_groups <= 1) {
862  GetSystemInfo(&info);
863  __kmp_xproc = info.dwNumberOfProcessors;
864  }
865 #else
866  (void)kernel32;
867  GetSystemInfo(&info);
868  __kmp_xproc = info.dwNumberOfProcessors;
869 #endif /* KMP_GROUP_AFFINITY */
870 
871  // If the OS said there were 0 procs, take a guess and use a value of 2.
872  // This is done for Linux* OS, also. Do we need error / warning?
873  if (__kmp_xproc <= 0) {
874  __kmp_xproc = 2;
875  }
876 
877  KA_TRACE(5,
878  ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
879 
880  __kmp_str_buf_free(&path);
881 
882 #if USE_ITT_BUILD
883  __kmp_itt_initialize();
884 #endif /* USE_ITT_BUILD */
885 
886  __kmp_init_runtime = TRUE;
887 } // __kmp_runtime_initialize
888 
889 void __kmp_runtime_destroy(void) {
890  if (!__kmp_init_runtime) {
891  return;
892  }
893 
894 #if USE_ITT_BUILD
895  __kmp_itt_destroy();
896 #endif /* USE_ITT_BUILD */
897 
898  /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
899  /* due to the KX_TRACE() commands */
900  KA_TRACE(40, ("__kmp_runtime_destroy\n"));
901 
902  if (__kmp_gtid_threadprivate_key) {
903  TlsFree(__kmp_gtid_threadprivate_key);
904  __kmp_gtid_threadprivate_key = 0;
905  }
906 
907  __kmp_affinity_uninitialize();
908  DeleteCriticalSection(&__kmp_win32_section);
909 
910  ntdll = NULL;
911  NtQuerySystemInformation = NULL;
912 
913 #if KMP_ARCH_X86_64
914  kernel32 = NULL;
915  __kmp_GetActiveProcessorCount = NULL;
916  __kmp_GetActiveProcessorGroupCount = NULL;
917  __kmp_GetThreadGroupAffinity = NULL;
918  __kmp_SetThreadGroupAffinity = NULL;
919 #endif // KMP_ARCH_X86_64
920 
921  __kmp_init_runtime = FALSE;
922 }
923 
924 void __kmp_terminate_thread(int gtid) {
925  kmp_info_t *th = __kmp_threads[gtid];
926 
927  if (!th)
928  return;
929 
930  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
931 
932  if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
933  /* It's OK, the thread may have exited already */
934  }
935  __kmp_free_handle(th->th.th_info.ds.ds_thread);
936 }
937 
938 void __kmp_clear_system_time(void) {
939  LARGE_INTEGER time;
940  QueryPerformanceCounter(&time);
941  __kmp_win32_time = (kmp_int64)time.QuadPart;
942 }
943 
944 void __kmp_initialize_system_tick(void) {
945  {
946  BOOL status;
947  LARGE_INTEGER freq;
948 
949  status = QueryPerformanceFrequency(&freq);
950  if (!status) {
951  DWORD error = GetLastError();
952  __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
953  KMP_ERR(error), __kmp_msg_null);
954 
955  } else {
956  __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
957  }
958  }
959 }
960 
961 /* Calculate the elapsed wall clock time for the user */
962 
963 void __kmp_elapsed(double *t) {
964  LARGE_INTEGER now;
965  QueryPerformanceCounter(&now);
966  *t = ((double)now.QuadPart) * __kmp_win32_tick;
967 }
968 
969 /* Calculate the elapsed wall clock tick for the user */
970 
971 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
972 
973 void __kmp_read_system_time(double *delta) {
974  if (delta != NULL) {
975  LARGE_INTEGER now;
976  QueryPerformanceCounter(&now);
977  *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
978  __kmp_win32_tick;
979  }
980 }
981 
982 /* Return the current time stamp in nsec */
983 kmp_uint64 __kmp_now_nsec() {
984  LARGE_INTEGER now;
985  QueryPerformanceCounter(&now);
986  return 1e9 * __kmp_win32_tick * now.QuadPart;
987 }
988 
989 extern "C" void *__stdcall __kmp_launch_worker(void *arg) {
990  volatile void *stack_data;
991  void *exit_val;
992  void *padding = 0;
993  kmp_info_t *this_thr = (kmp_info_t *)arg;
994  int gtid;
995 
996  gtid = this_thr->th.th_info.ds.ds_gtid;
997  __kmp_gtid_set_specific(gtid);
998 #ifdef KMP_TDATA_GTID
999 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1000  "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1001  "reference: http://support.microsoft.com/kb/118816"
1002 //__kmp_gtid = gtid;
1003 #endif
1004 
1005 #if USE_ITT_BUILD
1006  __kmp_itt_thread_name(gtid);
1007 #endif /* USE_ITT_BUILD */
1008 
1009  __kmp_affinity_set_init_mask(gtid, FALSE);
1010 
1011 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1012  // Set FP control regs to be a copy of the parallel initialization thread's.
1013  __kmp_clear_x87_fpu_status_word();
1014  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
1015  __kmp_load_mxcsr(&__kmp_init_mxcsr);
1016 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1017 
1018  if (__kmp_stkoffset > 0 && gtid > 0) {
1019  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
1020  (void)padding;
1021  }
1022 
1023  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1024  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1025  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1026 
1027  if (TCR_4(__kmp_gtid_mode) <
1028  2) { // check stack only if it is used to get gtid
1029  TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
1030  KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
1031  __kmp_check_stack_overlap(this_thr);
1032  }
1033  KMP_MB();
1034  exit_val = __kmp_launch_thread(this_thr);
1035  KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1036  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1037  KMP_MB();
1038  return exit_val;
1039 }
1040 
1041 #if KMP_USE_MONITOR
1042 /* The monitor thread controls all of the threads in the complex */
1043 
1044 void *__stdcall __kmp_launch_monitor(void *arg) {
1045  DWORD wait_status;
1046  kmp_thread_t monitor;
1047  int status;
1048  int interval;
1049  kmp_info_t *this_thr = (kmp_info_t *)arg;
1050 
1051  KMP_DEBUG_ASSERT(__kmp_init_monitor);
1052  TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1053  // TODO: hide "2" in enum (like {true,false,started})
1054  this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1055  TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1056 
1057  KMP_MB(); /* Flush all pending memory write invalidates. */
1058  KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1059 
1060  monitor = GetCurrentThread();
1061 
1062  /* set thread priority */
1063  status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1064  if (!status) {
1065  DWORD error = GetLastError();
1066  __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1067  }
1068 
1069  /* register us as monitor */
1070  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1071 #ifdef KMP_TDATA_GTID
1072 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1073  "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1074  "reference: http://support.microsoft.com/kb/118816"
1075 //__kmp_gtid = KMP_GTID_MONITOR;
1076 #endif
1077 
1078 #if USE_ITT_BUILD
1079  __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1080 // monitor thread.
1081 #endif /* USE_ITT_BUILD */
1082 
1083  KMP_MB(); /* Flush all pending memory write invalidates. */
1084 
1085  interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1086 
1087  while (!TCR_4(__kmp_global.g.g_done)) {
1088  /* This thread monitors the state of the system */
1089 
1090  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1091 
1092  wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1093 
1094  if (wait_status == WAIT_TIMEOUT) {
1095  TCW_4(__kmp_global.g.g_time.dt.t_value,
1096  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1097  }
1098 
1099  KMP_MB(); /* Flush all pending memory write invalidates. */
1100  }
1101 
1102  KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1103 
1104  status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1105  if (!status) {
1106  DWORD error = GetLastError();
1107  __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1108  }
1109 
1110  if (__kmp_global.g.g_abort != 0) {
1111  /* now we need to terminate the worker threads */
1112  /* the value of t_abort is the signal we caught */
1113  int gtid;
1114 
1115  KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1116  (__kmp_global.g.g_abort)));
1117 
1118  /* terminate the OpenMP worker threads */
1119  /* TODO this is not valid for sibling threads!!
1120  * the uber master might not be 0 anymore.. */
1121  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1122  __kmp_terminate_thread(gtid);
1123 
1124  __kmp_cleanup();
1125 
1126  Sleep(0);
1127 
1128  KA_TRACE(10,
1129  ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1130 
1131  if (__kmp_global.g.g_abort > 0) {
1132  raise(__kmp_global.g.g_abort);
1133  }
1134  }
1135 
1136  TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1137 
1138  KMP_MB();
1139  return arg;
1140 }
1141 #endif
1142 
1143 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1144  kmp_thread_t handle;
1145  DWORD idThread;
1146 
1147  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1148 
1149  th->th.th_info.ds.ds_gtid = gtid;
1150 
1151  if (KMP_UBER_GTID(gtid)) {
1152  int stack_data;
1153 
1154  /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1155  other threads to use. Is it appropriate to just use GetCurrentThread?
1156  When should we close this handle? When unregistering the root? */
1157  {
1158  BOOL rc;
1159  rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1160  GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1161  FALSE, DUPLICATE_SAME_ACCESS);
1162  KMP_ASSERT(rc);
1163  KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1164  "handle = %" KMP_UINTPTR_SPEC "\n",
1165  (LPVOID)th, th->th.th_info.ds.ds_thread));
1166  th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1167  }
1168  if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1169  /* we will dynamically update the stack range if gtid_mode == 1 */
1170  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1171  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1172  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1173  __kmp_check_stack_overlap(th);
1174  }
1175  } else {
1176  KMP_MB(); /* Flush all pending memory write invalidates. */
1177 
1178  /* Set stack size for this thread now. */
1179  KA_TRACE(10,
1180  ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1181  stack_size));
1182 
1183  stack_size += gtid * __kmp_stkoffset;
1184 
1185  TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1186  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1187 
1188  KA_TRACE(10,
1189  ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1190  " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1191  (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1192  (LPVOID)th, &idThread));
1193 
1194  handle = CreateThread(
1195  NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1196  (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1197 
1198  KA_TRACE(10,
1199  ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1200  " bytes, &__kmp_launch_worker = %p, th = %p, "
1201  "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1202  (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1203  (LPVOID)th, idThread, handle));
1204 
1205  if (handle == 0) {
1206  DWORD error = GetLastError();
1207  __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1208  } else {
1209  th->th.th_info.ds.ds_thread = handle;
1210  }
1211 
1212  KMP_MB(); /* Flush all pending memory write invalidates. */
1213  }
1214 
1215  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1216 }
1217 
1218 int __kmp_still_running(kmp_info_t *th) {
1219  return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1220 }
1221 
1222 #if KMP_USE_MONITOR
1223 void __kmp_create_monitor(kmp_info_t *th) {
1224  kmp_thread_t handle;
1225  DWORD idThread;
1226  int ideal, new_ideal;
1227 
1228  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1229  // We don't need monitor thread in case of MAX_BLOCKTIME
1230  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1231  "MAX blocktime\n"));
1232  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1233  th->th.th_info.ds.ds_gtid = 0;
1234  TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1235  return;
1236  }
1237  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1238 
1239  KMP_MB(); /* Flush all pending memory write invalidates. */
1240 
1241  __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1242  if (__kmp_monitor_ev == NULL) {
1243  DWORD error = GetLastError();
1244  __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1245  }
1246 #if USE_ITT_BUILD
1247  __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1248 #endif /* USE_ITT_BUILD */
1249 
1250  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1251  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1252 
1253  // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1254  // to automatically expand stacksize based on CreateThread error code.
1255  if (__kmp_monitor_stksize == 0) {
1256  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1257  }
1258  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1259  __kmp_monitor_stksize = __kmp_sys_min_stksize;
1260  }
1261 
1262  KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1263  (int)__kmp_monitor_stksize));
1264 
1265  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1266 
1267  handle =
1268  CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1269  (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1270  STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1271  if (handle == 0) {
1272  DWORD error = GetLastError();
1273  __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1274  } else
1275  th->th.th_info.ds.ds_thread = handle;
1276 
1277  KMP_MB(); /* Flush all pending memory write invalidates. */
1278 
1279  KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1280  (void *)th->th.th_info.ds.ds_thread));
1281 }
1282 #endif
1283 
1284 /* Check to see if thread is still alive.
1285  NOTE: The ExitProcess(code) system call causes all threads to Terminate
1286  with a exit_val = code. Because of this we can not rely on exit_val having
1287  any particular value. So this routine may return STILL_ALIVE in exit_val
1288  even after the thread is dead. */
1289 
1290 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1291  DWORD rc;
1292  rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1293  if (rc == 0) {
1294  DWORD error = GetLastError();
1295  __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1296  __kmp_msg_null);
1297  }
1298  return (*exit_val == STILL_ACTIVE);
1299 }
1300 
1301 void __kmp_exit_thread(int exit_status) {
1302  ExitThread(exit_status);
1303 } // __kmp_exit_thread
1304 
1305 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
1306 static void __kmp_reap_common(kmp_info_t *th) {
1307  DWORD exit_val;
1308 
1309  KMP_MB(); /* Flush all pending memory write invalidates. */
1310 
1311  KA_TRACE(
1312  10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1313 
1314  /* 2006-10-19:
1315  There are two opposite situations:
1316  1. Windows* OS keep thread alive after it resets ds_alive flag and
1317  exits from thread function. (For example, see C70770/Q394281 "unloading of
1318  dll based on OMP is very slow".)
1319  2. Windows* OS may kill thread before it resets ds_alive flag.
1320 
1321  Right solution seems to be waiting for *either* thread termination *or*
1322  ds_alive resetting. */
1323  {
1324  // TODO: This code is very similar to KMP_WAIT. Need to generalize
1325  // KMP_WAIT to cover this usage also.
1326  void *obj = NULL;
1327  kmp_uint32 spins;
1328  kmp_uint64 time;
1329 #if USE_ITT_BUILD
1330  KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1331 #endif /* USE_ITT_BUILD */
1332  KMP_INIT_YIELD(spins);
1333  KMP_INIT_BACKOFF(time);
1334  do {
1335 #if USE_ITT_BUILD
1336  KMP_FSYNC_SPIN_PREPARE(obj);
1337 #endif /* USE_ITT_BUILD */
1338  __kmp_is_thread_alive(th, &exit_val);
1339  KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
1340  } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1341 #if USE_ITT_BUILD
1342  if (exit_val == STILL_ACTIVE) {
1343  KMP_FSYNC_CANCEL(obj);
1344  } else {
1345  KMP_FSYNC_SPIN_ACQUIRED(obj);
1346  }
1347 #endif /* USE_ITT_BUILD */
1348  }
1349 
1350  __kmp_free_handle(th->th.th_info.ds.ds_thread);
1351 
1352  /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1353  with a exit_val = code. Because of this we can not rely on exit_val having
1354  any particular value. */
1355  kmp_intptr_t e = (kmp_intptr_t)exit_val;
1356  if (exit_val == STILL_ACTIVE) {
1357  KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1358  } else if ((void *)e != (void *)th) {
1359  KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1360  }
1361 
1362  KA_TRACE(10,
1363  ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1364  "\n",
1365  th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1366 
1367  th->th.th_info.ds.ds_thread = 0;
1368  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1369  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1370  th->th.th_info.ds.ds_thread_id = 0;
1371 
1372  KMP_MB(); /* Flush all pending memory write invalidates. */
1373 }
1374 
1375 #if KMP_USE_MONITOR
1376 void __kmp_reap_monitor(kmp_info_t *th) {
1377  int status;
1378 
1379  KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1380  (void *)th->th.th_info.ds.ds_thread));
1381 
1382  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1383  // If both tid and gtid are 0, it means the monitor did not ever start.
1384  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1385  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1386  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1387  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1388  return;
1389  }
1390 
1391  KMP_MB(); /* Flush all pending memory write invalidates. */
1392 
1393  status = SetEvent(__kmp_monitor_ev);
1394  if (status == FALSE) {
1395  DWORD error = GetLastError();
1396  __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1397  }
1398  KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1399  th->th.th_info.ds.ds_gtid));
1400  __kmp_reap_common(th);
1401 
1402  __kmp_free_handle(__kmp_monitor_ev);
1403 
1404  KMP_MB(); /* Flush all pending memory write invalidates. */
1405 }
1406 #endif
1407 
1408 void __kmp_reap_worker(kmp_info_t *th) {
1409  KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1410  th->th.th_info.ds.ds_gtid));
1411  __kmp_reap_common(th);
1412 }
1413 
1414 #if KMP_HANDLE_SIGNALS
1415 
1416 static void __kmp_team_handler(int signo) {
1417  if (__kmp_global.g.g_abort == 0) {
1418  // Stage 1 signal handler, let's shut down all of the threads.
1419  if (__kmp_debug_buf) {
1420  __kmp_dump_debug_buffer();
1421  }
1422  KMP_MB(); // Flush all pending memory write invalidates.
1423  TCW_4(__kmp_global.g.g_abort, signo);
1424  KMP_MB(); // Flush all pending memory write invalidates.
1425  TCW_4(__kmp_global.g.g_done, TRUE);
1426  KMP_MB(); // Flush all pending memory write invalidates.
1427  }
1428 } // __kmp_team_handler
1429 
1430 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1431  sig_func_t old = signal(signum, handler);
1432  if (old == SIG_ERR) {
1433  int error = errno;
1434  __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1435  __kmp_msg_null);
1436  }
1437  return old;
1438 }
1439 
1440 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1441  int parallel_init) {
1442  sig_func_t old;
1443  KMP_MB(); /* Flush all pending memory write invalidates. */
1444  KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1445  if (parallel_init) {
1446  old = __kmp_signal(sig, handler);
1447  // SIG_DFL on Windows* OS in NULL or 0.
1448  if (old == __kmp_sighldrs[sig]) {
1449  __kmp_siginstalled[sig] = 1;
1450  } else { // Restore/keep user's handler if one previously installed.
1451  old = __kmp_signal(sig, old);
1452  }
1453  } else {
1454  // Save initial/system signal handlers to see if user handlers installed.
1455  // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1456  // called once with parallel_init == TRUE.
1457  old = __kmp_signal(sig, SIG_DFL);
1458  __kmp_sighldrs[sig] = old;
1459  __kmp_signal(sig, old);
1460  }
1461  KMP_MB(); /* Flush all pending memory write invalidates. */
1462 } // __kmp_install_one_handler
1463 
1464 static void __kmp_remove_one_handler(int sig) {
1465  if (__kmp_siginstalled[sig]) {
1466  sig_func_t old;
1467  KMP_MB(); // Flush all pending memory write invalidates.
1468  KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1469  old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1470  if (old != __kmp_team_handler) {
1471  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1472  "restoring: sig=%d\n",
1473  sig));
1474  old = __kmp_signal(sig, old);
1475  }
1476  __kmp_sighldrs[sig] = NULL;
1477  __kmp_siginstalled[sig] = 0;
1478  KMP_MB(); // Flush all pending memory write invalidates.
1479  }
1480 } // __kmp_remove_one_handler
1481 
1482 void __kmp_install_signals(int parallel_init) {
1483  KB_TRACE(10, ("__kmp_install_signals: called\n"));
1484  if (!__kmp_handle_signals) {
1485  KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1486  "handlers not installed\n"));
1487  return;
1488  }
1489  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1490  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1491  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1492  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1493  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1494  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1495 } // __kmp_install_signals
1496 
1497 void __kmp_remove_signals(void) {
1498  int sig;
1499  KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1500  for (sig = 1; sig < NSIG; ++sig) {
1501  __kmp_remove_one_handler(sig);
1502  }
1503 } // __kmp_remove_signals
1504 
1505 #endif // KMP_HANDLE_SIGNALS
1506 
1507 /* Put the thread to sleep for a time period */
1508 void __kmp_thread_sleep(int millis) {
1509  DWORD status;
1510 
1511  status = SleepEx((DWORD)millis, FALSE);
1512  if (status) {
1513  DWORD error = GetLastError();
1514  __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1515  __kmp_msg_null);
1516  }
1517 }
1518 
1519 // Determine whether the given address is mapped into the current address space.
1520 int __kmp_is_address_mapped(void *addr) {
1521  MEMORY_BASIC_INFORMATION lpBuffer;
1522  SIZE_T dwLength;
1523 
1524  dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1525 
1526  VirtualQuery(addr, &lpBuffer, dwLength);
1527 
1528  return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1529  ((lpBuffer.Protect == PAGE_NOACCESS) ||
1530  (lpBuffer.Protect == PAGE_EXECUTE)));
1531 }
1532 
1533 kmp_uint64 __kmp_hardware_timestamp(void) {
1534  kmp_uint64 r = 0;
1535 
1536  QueryPerformanceCounter((LARGE_INTEGER *)&r);
1537  return r;
1538 }
1539 
1540 /* Free handle and check the error code */
1541 void __kmp_free_handle(kmp_thread_t tHandle) {
1542  /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1543  * as HANDLE */
1544  BOOL rc;
1545  rc = CloseHandle(tHandle);
1546  if (!rc) {
1547  DWORD error = GetLastError();
1548  __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1549  }
1550 }
1551 
1552 int __kmp_get_load_balance(int max) {
1553  static ULONG glb_buff_size = 100 * 1024;
1554 
1555  // Saved count of the running threads for the thread balance algorithm
1556  static int glb_running_threads = 0;
1557  static double glb_call_time = 0; /* Thread balance algorithm call time */
1558 
1559  int running_threads = 0; // Number of running threads in the system.
1560  NTSTATUS status = 0;
1561  ULONG buff_size = 0;
1562  ULONG info_size = 0;
1563  void *buffer = NULL;
1564  PSYSTEM_PROCESS_INFORMATION spi = NULL;
1565  int first_time = 1;
1566 
1567  double call_time = 0.0; // start, finish;
1568 
1569  __kmp_elapsed(&call_time);
1570 
1571  if (glb_call_time &&
1572  (call_time - glb_call_time < __kmp_load_balance_interval)) {
1573  running_threads = glb_running_threads;
1574  goto finish;
1575  }
1576  glb_call_time = call_time;
1577 
1578  // Do not spend time on running algorithm if we have a permanent error.
1579  if (NtQuerySystemInformation == NULL) {
1580  running_threads = -1;
1581  goto finish;
1582  }
1583 
1584  if (max <= 0) {
1585  max = INT_MAX;
1586  }
1587 
1588  do {
1589 
1590  if (first_time) {
1591  buff_size = glb_buff_size;
1592  } else {
1593  buff_size = 2 * buff_size;
1594  }
1595 
1596  buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1597  if (buffer == NULL) {
1598  running_threads = -1;
1599  goto finish;
1600  }
1601  status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1602  buff_size, &info_size);
1603  first_time = 0;
1604 
1605  } while (status == STATUS_INFO_LENGTH_MISMATCH);
1606  glb_buff_size = buff_size;
1607 
1608 #define CHECK(cond) \
1609  { \
1610  KMP_DEBUG_ASSERT(cond); \
1611  if (!(cond)) { \
1612  running_threads = -1; \
1613  goto finish; \
1614  } \
1615  }
1616 
1617  CHECK(buff_size >= info_size);
1618  spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1619  for (;;) {
1620  ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1621  CHECK(0 <= offset &&
1622  offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1623  HANDLE pid = spi->ProcessId;
1624  ULONG num = spi->NumberOfThreads;
1625  CHECK(num >= 1);
1626  size_t spi_size =
1627  sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1628  CHECK(offset + spi_size <
1629  info_size); // Make sure process info record fits the buffer.
1630  if (spi->NextEntryOffset != 0) {
1631  CHECK(spi_size <=
1632  spi->NextEntryOffset); // And do not overlap with the next record.
1633  }
1634  // pid == 0 corresponds to the System Idle Process. It always has running
1635  // threads on all cores. So, we don't consider the running threads of this
1636  // process.
1637  if (pid != 0) {
1638  for (int i = 0; i < num; ++i) {
1639  THREAD_STATE state = spi->Threads[i].State;
1640  // Count threads that have Ready or Running state.
1641  // !!! TODO: Why comment does not match the code???
1642  if (state == StateRunning) {
1643  ++running_threads;
1644  // Stop counting running threads if the number is already greater than
1645  // the number of available cores
1646  if (running_threads >= max) {
1647  goto finish;
1648  }
1649  }
1650  }
1651  }
1652  if (spi->NextEntryOffset == 0) {
1653  break;
1654  }
1655  spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1656  }
1657 
1658 #undef CHECK
1659 
1660 finish: // Clean up and exit.
1661 
1662  if (buffer != NULL) {
1663  KMP_INTERNAL_FREE(buffer);
1664  }
1665 
1666  glb_running_threads = running_threads;
1667 
1668  return running_threads;
1669 } //__kmp_get_load_balance()
1670 
1671 // Find symbol from the loaded modules
1672 void *__kmp_lookup_symbol(const char *name) {
1673  HANDLE process = GetCurrentProcess();
1674  DWORD needed;
1675  HMODULE *modules = nullptr;
1676  if (!EnumProcessModules(process, modules, 0, &needed))
1677  return nullptr;
1678  DWORD num_modules = needed / sizeof(HMODULE);
1679  modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE));
1680  if (!EnumProcessModules(process, modules, needed, &needed)) {
1681  free(modules);
1682  return nullptr;
1683  }
1684  void *proc = nullptr;
1685  for (uint32_t i = 0; i < num_modules; i++) {
1686  proc = (void *)GetProcAddress(modules[i], name);
1687  if (proc)
1688  break;
1689  }
1690  free(modules);
1691  return proc;
1692 }
1693 
1694 // Functions for hidden helper task
1695 void __kmp_hidden_helper_worker_thread_wait() {
1696  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1697 }
1698 
1699 void __kmp_do_initialize_hidden_helper_threads() {
1700  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1701 }
1702 
1703 void __kmp_hidden_helper_threads_initz_wait() {
1704  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1705 }
1706 
1707 void __kmp_hidden_helper_initz_release() {
1708  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1709 }
1710 
1711 void __kmp_hidden_helper_main_thread_wait() {
1712  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1713 }
1714 
1715 void __kmp_hidden_helper_main_thread_release() {
1716  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1717 }
1718 
1719 void __kmp_hidden_helper_worker_thread_signal() {
1720  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1721 }
1722 
1723 void __kmp_hidden_helper_threads_deinitz_wait() {
1724  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1725 }
1726 
1727 void __kmp_hidden_helper_threads_deinitz_release() {
1728  KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1729 }