LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 #define KMP_WEIGHTED_ITERATIONS_SUPPORTED \
31  (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \
32  (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33 
34 #define TASK_CURRENT_NOT_QUEUED 0
35 #define TASK_CURRENT_QUEUED 1
36 
37 #ifdef BUILD_TIED_TASK_STACK
38 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
39 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40 // Number of entries in each task stack array
41 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42 // Mask for determining index into stack block
43 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44 #endif // BUILD_TIED_TASK_STACK
45 
46 #define TASK_NOT_PUSHED 1
47 #define TASK_SUCCESSFULLY_PUSHED 0
48 #define TASK_TIED 1
49 #define TASK_UNTIED 0
50 #define TASK_EXPLICIT 1
51 #define TASK_IMPLICIT 0
52 #define TASK_PROXY 1
53 #define TASK_FULL 0
54 #define TASK_DETACHABLE 1
55 #define TASK_UNDETACHABLE 0
56 
57 #define KMP_CANCEL_THREADS
58 #define KMP_THREAD_ATTR
59 
60 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
61 // built on Android
62 #if defined(__ANDROID__)
63 #undef KMP_CANCEL_THREADS
64 #endif
65 
66 // Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67 // cancellation.
68 #if KMP_OS_WASI
69 #undef KMP_CANCEL_THREADS
70 #endif
71 
72 #if !KMP_OS_WASI
73 #include <signal.h>
74 #endif
75 #include <stdarg.h>
76 #include <stddef.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <string.h>
80 #include <limits>
81 #include <type_traits>
82 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83  Microsoft library. Some macros provided below to replace these functions */
84 #ifndef __ABSOFT_WIN
85 #include <sys/types.h>
86 #endif
87 #include <limits.h>
88 #include <time.h>
89 
90 #include <errno.h>
91 
92 #include "kmp_os.h"
93 
94 #include "kmp_safe_c_api.h"
95 
96 #if KMP_STATS_ENABLED
97 class kmp_stats_list;
98 #endif
99 
100 #if KMP_USE_HIER_SCHED
101 // Only include hierarchical scheduling if affinity is supported
102 #undef KMP_USE_HIER_SCHED
103 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104 #endif
105 
106 // OMPD_SKIP_HWLOC used in libompd/omp-icv.cpp to avoid OMPD depending on hwloc
107 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED && !defined(OMPD_SKIP_HWLOC)
108 #include "hwloc.h"
109 #ifndef HWLOC_OBJ_NUMANODE
110 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
111 #endif
112 #ifndef HWLOC_OBJ_PACKAGE
113 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
114 #endif
115 #endif
116 
117 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
118 #include <xmmintrin.h>
119 #endif
120 
121 // The below has to be defined before including "kmp_barrier.h".
122 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
123 #define KMP_INTERNAL_FREE(p) free(p)
124 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
125 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
126 
127 #include "kmp_debug.h"
128 #include "kmp_lock.h"
129 #include "kmp_version.h"
130 #include "kmp_barrier.h"
131 #if USE_DEBUGGER
132 #include "kmp_debugger.h"
133 #endif
134 #include "kmp_i18n.h"
135 
136 #define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
137 
138 #include "kmp_wrapper_malloc.h"
139 #if KMP_OS_UNIX
140 #include <unistd.h>
141 #if !defined NSIG && defined _NSIG
142 #define NSIG _NSIG
143 #endif
144 #endif
145 
146 #if KMP_OS_LINUX
147 #pragma weak clock_gettime
148 #endif
149 
150 #if OMPT_SUPPORT
151 #include "ompt-internal.h"
152 #endif
153 
154 #if OMPD_SUPPORT
155 #include "ompd-specific.h"
156 #endif
157 
158 #ifndef UNLIKELY
159 #define UNLIKELY(x) (x)
160 #endif
161 
162 // Affinity format function
163 #include "kmp_str.h"
164 
165 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
166 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
167 // free lists of limited size.
168 #ifndef USE_FAST_MEMORY
169 #define USE_FAST_MEMORY 3
170 #endif
171 
172 #ifndef KMP_NESTED_HOT_TEAMS
173 #define KMP_NESTED_HOT_TEAMS 0
174 #define USE_NESTED_HOT_ARG(x)
175 #else
176 #if KMP_NESTED_HOT_TEAMS
177 #define USE_NESTED_HOT_ARG(x) , x
178 #else
179 #define USE_NESTED_HOT_ARG(x)
180 #endif
181 #endif
182 
183 // Assume using BGET compare_exchange instruction instead of lock by default.
184 #ifndef USE_CMP_XCHG_FOR_BGET
185 #define USE_CMP_XCHG_FOR_BGET 1
186 #endif
187 
188 // Test to see if queuing lock is better than bootstrap lock for bget
189 // #ifndef USE_QUEUING_LOCK_FOR_BGET
190 // #define USE_QUEUING_LOCK_FOR_BGET
191 // #endif
192 
193 #define KMP_NSEC_PER_SEC 1000000000L
194 #define KMP_USEC_PER_SEC 1000000L
195 #define KMP_NSEC_PER_USEC 1000L
196 
205 enum {
210  /* 0x04 is no longer used */
219  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
220  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
221  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
222 
223  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
224  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
225 
237  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
238  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
239  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
240  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
241  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
242 };
243 
247 typedef struct ident {
248  kmp_int32 reserved_1;
249  kmp_int32 flags;
251  kmp_int32 reserved_2;
252 #if USE_ITT_BUILD
253 /* but currently used for storing region-specific ITT */
254 /* contextual information. */
255 #endif /* USE_ITT_BUILD */
256  kmp_int32 reserved_3;
257  char const *psource;
261  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
262  kmp_int32 get_openmp_version() {
263  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
264  }
270 // Some forward declarations.
271 typedef union kmp_team kmp_team_t;
272 typedef struct kmp_taskdata kmp_taskdata_t;
273 typedef union kmp_task_team kmp_task_team_t;
274 typedef union kmp_team kmp_team_p;
275 typedef union kmp_info kmp_info_p;
276 typedef union kmp_root kmp_root_p;
277 
278 template <bool C = false, bool S = true> class kmp_flag_32;
279 template <bool C = false, bool S = true> class kmp_flag_64;
280 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
281 class kmp_flag_oncore;
282 
283 #ifdef __cplusplus
284 extern "C" {
285 #endif
286 
287 /* ------------------------------------------------------------------------ */
288 
289 /* Pack two 32-bit signed integers into a 64-bit signed integer */
290 /* ToDo: Fix word ordering for big-endian machines. */
291 #define KMP_PACK_64(HIGH_32, LOW_32) \
292  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
293 
294 // Generic string manipulation macros. Assume that _x is of type char *
295 #define SKIP_WS(_x) \
296  { \
297  while (*(_x) == ' ' || *(_x) == '\t') \
298  (_x)++; \
299  }
300 #define SKIP_DIGITS(_x) \
301  { \
302  while (*(_x) >= '0' && *(_x) <= '9') \
303  (_x)++; \
304  }
305 #define SKIP_TOKEN(_x) \
306  { \
307  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
308  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
309  (_x)++; \
310  }
311 #define SKIP_TO(_x, _c) \
312  { \
313  while (*(_x) != '\0' && *(_x) != (_c)) \
314  (_x)++; \
315  }
316 
317 /* ------------------------------------------------------------------------ */
318 
319 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
320 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
321 
322 /* ------------------------------------------------------------------------ */
323 /* Enumeration types */
324 
325 enum kmp_state_timer {
326  ts_stop,
327  ts_start,
328  ts_pause,
329 
330  ts_last_state
331 };
332 
333 enum dynamic_mode {
334  dynamic_default,
335 #ifdef USE_LOAD_BALANCE
336  dynamic_load_balance,
337 #endif /* USE_LOAD_BALANCE */
338  dynamic_random,
339  dynamic_thread_limit,
340  dynamic_max
341 };
342 
343 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
344  * not include it here */
345 #ifndef KMP_SCHED_TYPE_DEFINED
346 #define KMP_SCHED_TYPE_DEFINED
347 typedef enum kmp_sched {
348  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
349  // Note: need to adjust __kmp_sch_map global array in case enum is changed
350  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
351  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
352  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
353  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
354  kmp_sched_upper_std = 5, // upper bound for standard schedules
355  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
356  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
357 #if KMP_STATIC_STEAL_ENABLED
358  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
359 #endif
360  kmp_sched_upper,
361  kmp_sched_default = kmp_sched_static, // default scheduling
362  kmp_sched_monotonic = 0x80000000
363 } kmp_sched_t;
364 #endif
365 
370 enum sched_type : kmp_int32 {
372  kmp_sch_static_chunked = 33,
374  kmp_sch_dynamic_chunked = 35,
376  kmp_sch_runtime = 37,
378  kmp_sch_trapezoidal = 39,
379 
380  /* accessible only through KMP_SCHEDULE environment variable */
381  kmp_sch_static_greedy = 40,
382  kmp_sch_static_balanced = 41,
383  /* accessible only through KMP_SCHEDULE environment variable */
384  kmp_sch_guided_iterative_chunked = 42,
385  kmp_sch_guided_analytical_chunked = 43,
386  /* accessible only through KMP_SCHEDULE environment variable */
387  kmp_sch_static_steal = 44,
388 
389  /* static with chunk adjustment (e.g., simd) */
390  kmp_sch_static_balanced_chunked = 45,
394  /* accessible only through KMP_SCHEDULE environment variable */
398  kmp_ord_static_chunked = 65,
400  kmp_ord_dynamic_chunked = 67,
401  kmp_ord_guided_chunked = 68,
402  kmp_ord_runtime = 69,
404  kmp_ord_trapezoidal = 71,
407  /* Schedules for Distribute construct */
411  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
412  single iteration/chunk, even if the loop is serialized. For the schedule
413  types listed above, the entire iteration vector is returned if the loop is
414  serialized. This doesn't work for gcc/gcomp sections. */
415  kmp_nm_lower = 160,
417  kmp_nm_static_chunked =
418  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
420  kmp_nm_dynamic_chunked = 163,
422  kmp_nm_runtime = 165,
423  kmp_nm_auto = 166,
424  kmp_nm_trapezoidal = 167,
425 
426  /* accessible only through KMP_SCHEDULE environment variable */
427  kmp_nm_static_greedy = 168,
428  kmp_nm_static_balanced = 169,
429  /* accessible only through KMP_SCHEDULE environment variable */
430  kmp_nm_guided_iterative_chunked = 170,
431  kmp_nm_guided_analytical_chunked = 171,
432  kmp_nm_static_steal =
433  172, /* accessible only through OMP_SCHEDULE environment variable */
434 
435  kmp_nm_ord_static_chunked = 193,
437  kmp_nm_ord_dynamic_chunked = 195,
438  kmp_nm_ord_guided_chunked = 196,
439  kmp_nm_ord_runtime = 197,
441  kmp_nm_ord_trapezoidal = 199,
444  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
445  we need to distinguish the three possible cases (no modifier, monotonic
446  modifier, nonmonotonic modifier), we need separate bits for each modifier.
447  The absence of monotonic does not imply nonmonotonic, especially since 4.5
448  says that the behaviour of the "no modifier" case is implementation defined
449  in 4.5, but will become "nonmonotonic" in 5.0.
450 
451  Since we're passing a full 32 bit value, we can use a couple of high bits
452  for these flags; out of paranoia we avoid the sign bit.
453 
454  These modifiers can be or-ed into non-static schedules by the compiler to
455  pass the additional information. They will be stripped early in the
456  processing in __kmp_dispatch_init when setting up schedules, so most of the
457  code won't ever see schedules with these bits set. */
459  (1 << 29),
461  (1 << 30),
463 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
464  (enum sched_type)( \
466 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
467 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
468 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
469  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
470 #define SCHEDULE_GET_MODIFIERS(s) \
471  ((enum sched_type)( \
472  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
473 #define SCHEDULE_SET_MODIFIERS(s, m) \
474  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
475 #define SCHEDULE_NONMONOTONIC 0
476 #define SCHEDULE_MONOTONIC 1
477 
479 };
480 
481 // Apply modifiers on internal kind to standard kind
482 static inline void
483 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
484  enum sched_type internal_kind) {
485  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
486  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
487  }
488 }
489 
490 // Apply modifiers on standard kind to internal kind
491 static inline void
492 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
493  enum sched_type *internal_kind) {
494  if ((int)kind & (int)kmp_sched_monotonic) {
495  *internal_kind = (enum sched_type)((int)*internal_kind |
497  }
498 }
499 
500 // Get standard schedule without modifiers
501 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
502  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
503 }
504 
505 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
506 typedef union kmp_r_sched {
507  struct {
508  enum sched_type r_sched_type;
509  int chunk;
510  };
511  kmp_int64 sched;
512 } kmp_r_sched_t;
513 
514 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
515 // internal schedule types
516 
517 enum library_type {
518  library_none,
519  library_serial,
520  library_turnaround,
521  library_throughput
522 };
523 
524 #if KMP_MIC_SUPPORTED
525 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
526 #endif
527 
528 // OpenMP 3.1 - Nested num threads array
529 typedef struct kmp_nested_nthreads_t {
530  int *nth;
531  int size;
532  int used;
533 } kmp_nested_nthreads_t;
534 
535 extern kmp_nested_nthreads_t __kmp_nested_nth;
536 
537 /* -- fast reduction stuff ------------------------------------------------ */
538 
539 #undef KMP_FAST_REDUCTION_BARRIER
540 #define KMP_FAST_REDUCTION_BARRIER 1
541 
542 #undef KMP_FAST_REDUCTION_CORE_DUO
543 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
544 #define KMP_FAST_REDUCTION_CORE_DUO 1
545 #endif
546 
547 enum _reduction_method {
548  reduction_method_not_defined = 0,
549  critical_reduce_block = (1 << 8),
550  atomic_reduce_block = (2 << 8),
551  tree_reduce_block = (3 << 8),
552  empty_reduce_block = (4 << 8)
553 };
554 
555 // Description of the packed_reduction_method variable:
556 // The packed_reduction_method variable consists of two enum types variables
557 // that are packed together into 0-th byte and 1-st byte:
558 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
559 // barrier that will be used in fast reduction: bs_plain_barrier or
560 // bs_reduction_barrier
561 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
562 // be used in fast reduction;
563 // Reduction method is of 'enum _reduction_method' type and it's defined the way
564 // so that the bits of 0-th byte are empty, so no need to execute a shift
565 // instruction while packing/unpacking
566 
567 #if KMP_FAST_REDUCTION_BARRIER
568 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
569  ((reduction_method) | (barrier_type))
570 
571 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
572  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
573 
574 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
575  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
576 #else
577 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
578  (reduction_method)
579 
580 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
581  (packed_reduction_method)
582 
583 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
584 #endif
585 
586 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
587  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
588  (which_reduction_block))
589 
590 #if KMP_FAST_REDUCTION_BARRIER
591 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
592  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
593 
594 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
595  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
596 #endif
597 
598 typedef int PACKED_REDUCTION_METHOD_T;
599 
600 /* -- end of fast reduction stuff ----------------------------------------- */
601 
602 #if KMP_OS_WINDOWS
603 #define USE_CBLKDATA
604 #if KMP_MSVC_COMPAT
605 #pragma warning(push)
606 #pragma warning(disable : 271 310)
607 #endif
608 #include <windows.h>
609 #if KMP_MSVC_COMPAT
610 #pragma warning(pop)
611 #endif
612 #endif
613 
614 #if KMP_OS_UNIX
615 #if !KMP_OS_WASI
616 #include <dlfcn.h>
617 #endif
618 #include <pthread.h>
619 #endif
620 
621 enum kmp_hw_t : int {
622  KMP_HW_UNKNOWN = -1,
623  KMP_HW_SOCKET = 0,
624  KMP_HW_PROC_GROUP,
625  KMP_HW_NUMA,
626  KMP_HW_DIE,
627  KMP_HW_LLC,
628  KMP_HW_L3,
629  KMP_HW_TILE,
630  KMP_HW_MODULE,
631  KMP_HW_L2,
632  KMP_HW_L1,
633  KMP_HW_CORE,
634  KMP_HW_THREAD,
635  KMP_HW_LAST
636 };
637 
638 typedef enum kmp_hw_core_type_t {
639  KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
640 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
641  KMP_HW_CORE_TYPE_ATOM = 0x20,
642  KMP_HW_CORE_TYPE_CORE = 0x40,
643  KMP_HW_MAX_NUM_CORE_TYPES = 3,
644 #else
645  KMP_HW_MAX_NUM_CORE_TYPES = 1,
646 #endif
647 } kmp_hw_core_type_t;
648 
649 #define KMP_HW_MAX_NUM_CORE_EFFS 8
650 
651 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
652  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
653 #define KMP_ASSERT_VALID_HW_TYPE(type) \
654  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
655 
656 #define KMP_FOREACH_HW_TYPE(type) \
657  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
658  type = (kmp_hw_t)((int)type + 1))
659 
660 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
661 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
662 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
663 
664 /* Only Linux* OS and Windows* OS support thread affinity. */
665 #if KMP_AFFINITY_SUPPORTED
666 
667 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
668 #if KMP_OS_WINDOWS
669 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
670 typedef struct GROUP_AFFINITY {
671  KAFFINITY Mask;
672  WORD Group;
673  WORD Reserved[3];
674 } GROUP_AFFINITY;
675 #endif /* _MSC_VER < 1600 */
676 #if KMP_GROUP_AFFINITY
677 extern int __kmp_num_proc_groups;
678 #else
679 static const int __kmp_num_proc_groups = 1;
680 #endif /* KMP_GROUP_AFFINITY */
681 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
682 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
683 
684 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
685 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
686 
687 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
688 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
689 
690 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
691  GROUP_AFFINITY *);
692 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
693 #endif /* KMP_OS_WINDOWS */
694 
695 #if KMP_USE_HWLOC && !defined(OMPD_SKIP_HWLOC)
696 extern hwloc_topology_t __kmp_hwloc_topology;
697 extern int __kmp_hwloc_error;
698 #endif
699 
700 extern size_t __kmp_affin_mask_size;
701 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
702 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
703 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
704 #define KMP_CPU_SET_ITERATE(i, mask) \
705  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
706 #define KMP_CPU_SET(i, mask) (mask)->set(i)
707 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
708 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
709 #define KMP_CPU_ZERO(mask) (mask)->zero()
710 #define KMP_CPU_ISEMPTY(mask) (mask)->empty()
711 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
712 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
713 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
714 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
715 #define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
716 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
717 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
718 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
719 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
720 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
721 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
722 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
723 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
724  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
725 #define KMP_CPU_FREE_ARRAY(arr, n) \
726  __kmp_affinity_dispatch->deallocate_mask_array(arr)
727 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
728 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
729 #define __kmp_get_system_affinity(mask, abort_bool) \
730  (mask)->get_system_affinity(abort_bool)
731 #define __kmp_set_system_affinity(mask, abort_bool) \
732  (mask)->set_system_affinity(abort_bool)
733 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
734 
735 class KMPAffinity {
736 public:
737  class Mask {
738  public:
739  void *operator new(size_t n);
740  void operator delete(void *p);
741  void *operator new[](size_t n);
742  void operator delete[](void *p);
743  virtual ~Mask() {}
744  // Set bit i to 1
745  virtual void set(int i) {}
746  // Return bit i
747  virtual bool is_set(int i) const { return false; }
748  // Set bit i to 0
749  virtual void clear(int i) {}
750  // Zero out entire mask
751  virtual void zero() {}
752  // Check whether mask is empty
753  virtual bool empty() const { return true; }
754  // Copy src into this mask
755  virtual void copy(const Mask *src) {}
756  // this &= rhs
757  virtual void bitwise_and(const Mask *rhs) {}
758  // this |= rhs
759  virtual void bitwise_or(const Mask *rhs) {}
760  // this = ~this
761  virtual void bitwise_not() {}
762  // this == rhs
763  virtual bool is_equal(const Mask *rhs) const { return false; }
764  // API for iterating over an affinity mask
765  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
766  virtual int begin() const { return 0; }
767  virtual int end() const { return 0; }
768  virtual int next(int previous) const { return 0; }
769 #if KMP_OS_WINDOWS
770  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
771 #endif
772  // Set the system's affinity to this affinity mask's value
773  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
774  // Set this affinity mask to the current system affinity
775  virtual int get_system_affinity(bool abort_on_error) { return -1; }
776  // Only 1 DWORD in the mask should have any procs set.
777  // Return the appropriate index, or -1 for an invalid mask.
778  virtual int get_proc_group() const { return -1; }
779  int get_max_cpu() const {
780  int cpu;
781  int max_cpu = -1;
782  KMP_CPU_SET_ITERATE(cpu, this) {
783  if (cpu > max_cpu)
784  max_cpu = cpu;
785  }
786  return max_cpu;
787  }
788  };
789  void *operator new(size_t n);
790  void operator delete(void *p);
791  // Need virtual destructor
792  virtual ~KMPAffinity() = default;
793  // Determine if affinity is capable
794  virtual void determine_capable(const char *env_var) {}
795  // Bind the current thread to os proc
796  virtual void bind_thread(int proc) {}
797  // Factory functions to allocate/deallocate a mask
798  virtual Mask *allocate_mask() { return nullptr; }
799  virtual void deallocate_mask(Mask *m) {}
800  virtual Mask *allocate_mask_array(int num) { return nullptr; }
801  virtual void deallocate_mask_array(Mask *m) {}
802  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
803  static void pick_api();
804  static void destroy_api();
805  enum api_type {
806  NATIVE_OS
807 #if KMP_USE_HWLOC
808  ,
809  HWLOC
810 #endif
811  };
812  virtual api_type get_api_type() const {
813  KMP_ASSERT(0);
814  return NATIVE_OS;
815  }
816 
817 private:
818  static bool picked_api;
819 };
820 
821 typedef KMPAffinity::Mask kmp_affin_mask_t;
822 extern KMPAffinity *__kmp_affinity_dispatch;
823 
824 #if !KMP_OS_AIX
825 class kmp_affinity_raii_t {
826  kmp_affin_mask_t *mask;
827  bool restored;
828 
829 public:
830  kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
831  : mask(nullptr), restored(false) {
832  if (KMP_AFFINITY_CAPABLE()) {
833  KMP_CPU_ALLOC(mask);
834  KMP_ASSERT(mask != NULL);
835  __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
836  if (new_mask)
837  __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
838  }
839  }
840  void restore() {
841  if (mask && KMP_AFFINITY_CAPABLE() && !restored) {
842  __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
843  KMP_CPU_FREE(mask);
844  }
845  restored = true;
846  }
847  ~kmp_affinity_raii_t() { restore(); }
848 };
849 #endif // !KMP_OS_AIX
850 
851 // Declare local char buffers with this size for printing debug and info
852 // messages, using __kmp_affinity_print_mask().
853 #define KMP_AFFIN_MASK_PRINT_LEN 1024
854 
855 enum affinity_type {
856  affinity_none = 0,
857  affinity_physical,
858  affinity_logical,
859  affinity_compact,
860  affinity_scatter,
861  affinity_explicit,
862  affinity_balanced,
863  affinity_disabled, // not used outsize the env var parser
864  affinity_default
865 };
866 
867 enum affinity_top_method {
868  affinity_top_method_all = 0, // try all (supported) methods, in order
869 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
870  affinity_top_method_apicid,
871  affinity_top_method_x2apicid,
872  affinity_top_method_x2apicid_1f,
873 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
874  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
875 #if KMP_GROUP_AFFINITY
876  affinity_top_method_group,
877 #endif /* KMP_GROUP_AFFINITY */
878  affinity_top_method_flat,
879 #if KMP_USE_HWLOC
880  affinity_top_method_hwloc,
881 #endif
882  affinity_top_method_default
883 };
884 
885 #define affinity_respect_mask_default (2)
886 
887 typedef struct kmp_affinity_flags_t {
888  unsigned dups : 1;
889  unsigned verbose : 1;
890  unsigned warnings : 1;
891  unsigned respect : 2;
892  unsigned reset : 1;
893  unsigned initialized : 1;
894  unsigned core_types_gran : 1;
895  unsigned core_effs_gran : 1;
896  unsigned omp_places : 1;
897  unsigned reserved : 22;
898 } kmp_affinity_flags_t;
899 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
900 
901 typedef struct kmp_affinity_ids_t {
902  int os_id;
903  int ids[KMP_HW_LAST];
904 } kmp_affinity_ids_t;
905 
906 typedef struct kmp_affinity_attrs_t {
907  int core_type : 8;
908  int core_eff : 8;
909  unsigned valid : 1;
910  unsigned reserved : 15;
911 } kmp_affinity_attrs_t;
912 #define KMP_AFFINITY_ATTRS_UNKNOWN \
913  { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
914 
915 typedef struct kmp_affinity_t {
916  char *proclist;
917  enum affinity_type type;
918  kmp_hw_t gran;
919  int gran_levels;
920  kmp_affinity_attrs_t core_attr_gran;
921  int compact;
922  int offset;
923  kmp_affinity_flags_t flags;
924  unsigned num_masks;
925  kmp_affin_mask_t *masks;
926  kmp_affinity_ids_t *ids;
927  kmp_affinity_attrs_t *attrs;
928  unsigned num_os_id_masks;
929  kmp_affin_mask_t *os_id_masks;
930  const char *env_var;
931 } kmp_affinity_t;
932 
933 #define KMP_AFFINITY_INIT(env) \
934  { \
935  nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
936  0, 0, \
937  {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
938  FALSE, FALSE, FALSE}, \
939  0, nullptr, nullptr, nullptr, 0, nullptr, env \
940  }
941 
942 extern enum affinity_top_method __kmp_affinity_top_method;
943 extern kmp_affinity_t __kmp_affinity;
944 extern kmp_affinity_t __kmp_hh_affinity;
945 extern kmp_affinity_t *__kmp_affinities[2];
946 
947 extern void __kmp_affinity_bind_thread(int which);
948 
949 extern kmp_affin_mask_t *__kmp_affin_fullMask;
950 extern kmp_affin_mask_t *__kmp_affin_origMask;
951 extern char *__kmp_cpuinfo_file;
952 
953 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
954 extern int __kmp_first_osid_with_ecore;
955 #endif
956 
957 #endif /* KMP_AFFINITY_SUPPORTED */
958 
959 // This needs to be kept in sync with the values in omp.h !!!
960 typedef enum kmp_proc_bind_t {
961  proc_bind_false = 0,
962  proc_bind_true,
963  proc_bind_primary,
964  proc_bind_close,
965  proc_bind_spread,
966  proc_bind_intel, // use KMP_AFFINITY interface
967  proc_bind_default
968 } kmp_proc_bind_t;
969 
970 typedef struct kmp_nested_proc_bind_t {
971  kmp_proc_bind_t *bind_types;
972  int size;
973  int used;
974 } kmp_nested_proc_bind_t;
975 
976 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
977 extern kmp_proc_bind_t __kmp_teams_proc_bind;
978 
979 extern int __kmp_display_affinity;
980 extern char *__kmp_affinity_format;
981 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
982 #if OMPT_SUPPORT
983 extern int __kmp_tool;
984 extern char *__kmp_tool_libraries;
985 #endif // OMPT_SUPPORT
986 
987 #if KMP_AFFINITY_SUPPORTED
988 #define KMP_PLACE_ALL (-1)
989 #define KMP_PLACE_UNDEFINED (-2)
990 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
991 #define KMP_AFFINITY_NON_PROC_BIND \
992  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
993  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
994  (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
995 #endif /* KMP_AFFINITY_SUPPORTED */
996 
997 extern int __kmp_affinity_num_places;
998 
999 typedef enum kmp_cancel_kind_t {
1000  cancel_noreq = 0,
1001  cancel_parallel = 1,
1002  cancel_loop = 2,
1003  cancel_sections = 3,
1004  cancel_taskgroup = 4
1005 } kmp_cancel_kind_t;
1006 
1007 // KMP_HW_SUBSET support:
1008 typedef struct kmp_hws_item {
1009  int num;
1010  int offset;
1011 } kmp_hws_item_t;
1012 
1013 extern kmp_hws_item_t __kmp_hws_socket;
1014 extern kmp_hws_item_t __kmp_hws_die;
1015 extern kmp_hws_item_t __kmp_hws_node;
1016 extern kmp_hws_item_t __kmp_hws_tile;
1017 extern kmp_hws_item_t __kmp_hws_core;
1018 extern kmp_hws_item_t __kmp_hws_proc;
1019 extern int __kmp_hws_requested;
1020 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1021 
1022 /* ------------------------------------------------------------------------ */
1023 
1024 #define KMP_PAD(type, sz) \
1025  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1026 
1027 // We need to avoid using -1 as a GTID as +1 is added to the gtid
1028 // when storing it in a lock, and the value 0 is reserved.
1029 #define KMP_GTID_DNE (-2) /* Does not exist */
1030 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1031 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1032 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
1033 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1034 
1035 /* OpenMP 5.0 Memory Management support */
1036 
1037 #ifndef __OMP_H
1038 // Duplicate type definitions from omp.h
1039 typedef uintptr_t omp_uintptr_t;
1040 
1041 typedef enum {
1042  omp_atk_sync_hint = 1,
1043  omp_atk_alignment = 2,
1044  omp_atk_access = 3,
1045  omp_atk_pool_size = 4,
1046  omp_atk_fallback = 5,
1047  omp_atk_fb_data = 6,
1048  omp_atk_pinned = 7,
1049  omp_atk_partition = 8,
1050  omp_atk_pin_device = 9,
1051  omp_atk_preferred_device = 10,
1052  omp_atk_device_access = 11,
1053  omp_atk_target_access = 12,
1054  omp_atk_atomic_scope = 13,
1055  omp_atk_part_size = 14
1056 } omp_alloctrait_key_t;
1057 
1058 typedef enum {
1059  omp_atv_false = 0,
1060  omp_atv_true = 1,
1061  omp_atv_contended = 3,
1062  omp_atv_uncontended = 4,
1063  omp_atv_serialized = 5,
1064  omp_atv_sequential = omp_atv_serialized, // (deprecated)
1065  omp_atv_private = 6,
1066  omp_atv_device = 7,
1067  omp_atv_thread = 8,
1068  omp_atv_pteam = 9,
1069  omp_atv_cgroup = 10,
1070  omp_atv_default_mem_fb = 11,
1071  omp_atv_null_fb = 12,
1072  omp_atv_abort_fb = 13,
1073  omp_atv_allocator_fb = 14,
1074  omp_atv_environment = 15,
1075  omp_atv_nearest = 16,
1076  omp_atv_blocked = 17,
1077  omp_atv_interleaved = 18,
1078  omp_atv_all = 19,
1079  omp_atv_single = 20,
1080  omp_atv_multiple = 21,
1081  omp_atv_memspace = 22
1082 } omp_alloctrait_value_t;
1083 #define omp_atv_default ((omp_uintptr_t)-1)
1084 
1085 typedef void *omp_memspace_handle_t;
1086 extern omp_memspace_handle_t const omp_null_mem_space;
1087 extern omp_memspace_handle_t const omp_default_mem_space;
1088 extern omp_memspace_handle_t const omp_large_cap_mem_space;
1089 extern omp_memspace_handle_t const omp_const_mem_space;
1090 extern omp_memspace_handle_t const omp_high_bw_mem_space;
1091 extern omp_memspace_handle_t const omp_low_lat_mem_space;
1092 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1093 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1094 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1095 extern omp_memspace_handle_t const kmp_max_mem_space;
1096 
1097 typedef struct {
1098  omp_alloctrait_key_t key;
1099  omp_uintptr_t value;
1100 } omp_alloctrait_t;
1101 
1102 typedef void *omp_allocator_handle_t;
1103 extern omp_allocator_handle_t const omp_null_allocator;
1104 extern omp_allocator_handle_t const omp_default_mem_alloc;
1105 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1106 extern omp_allocator_handle_t const omp_const_mem_alloc;
1107 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1108 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1109 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1110 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1111 extern omp_allocator_handle_t const omp_thread_mem_alloc;
1112 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1113 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1114 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1115 extern omp_allocator_handle_t const kmp_max_mem_alloc;
1116 extern omp_allocator_handle_t __kmp_def_allocator;
1117 
1118 // end of duplicate type definitions from omp.h
1119 #endif
1120 
1121 extern int __kmp_memkind_available;
1122 extern bool __kmp_hwloc_available;
1123 
1125 typedef struct kmp_memspace_t {
1126  omp_memspace_handle_t memspace; // predefined input memory space
1127  int num_resources = 0; // number of available resources
1128  int *resources = nullptr; // available resources
1129  kmp_memspace_t *next = nullptr; // next memory space handle
1130 } kmp_memspace_t;
1131 
1133 typedef struct kmp_allocator_t {
1134  omp_memspace_handle_t memspace;
1135  void **memkind; // pointer to memkind
1136  size_t alignment;
1137  omp_alloctrait_value_t fb;
1138  kmp_allocator_t *fb_data;
1139  kmp_uint64 pool_size;
1140  kmp_uint64 pool_used;
1141  bool pinned;
1142  omp_alloctrait_value_t partition;
1143  int pin_device;
1144  int preferred_device;
1145  omp_alloctrait_value_t target_access;
1146  omp_alloctrait_value_t atomic_scope;
1147  size_t part_size;
1148 #if KMP_USE_HWLOC
1149  omp_alloctrait_value_t membind;
1150 #endif
1151 } kmp_allocator_t;
1152 
1153 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1154  omp_memspace_handle_t,
1155  int ntraits,
1156  omp_alloctrait_t traits[]);
1157 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1158 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1159 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1160 // external interfaces, may be used by compiler
1161 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1162 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1163  omp_allocator_handle_t al);
1164 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1165  omp_allocator_handle_t al);
1166 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1167  omp_allocator_handle_t al,
1168  omp_allocator_handle_t free_al);
1169 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1170 // internal interfaces, contain real implementation
1171 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1172  omp_allocator_handle_t al);
1173 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1174  omp_allocator_handle_t al);
1175 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1176  omp_allocator_handle_t al,
1177  omp_allocator_handle_t free_al);
1178 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1179 
1180 extern void __kmp_init_memkind();
1181 extern void __kmp_fini_memkind();
1182 extern void __kmp_init_target_mem();
1183 extern void __kmp_fini_target_mem();
1184 
1185 // OpenMP 6.0 (TR11) Memory Management support
1186 extern omp_memspace_handle_t __kmp_get_devices_memspace(int ndevs,
1187  const int *devs,
1188  omp_memspace_handle_t,
1189  int host);
1190 extern omp_allocator_handle_t __kmp_get_devices_allocator(int ndevs,
1191  const int *devs,
1192  omp_memspace_handle_t,
1193  int host);
1194 extern int __kmp_get_memspace_num_resources(omp_memspace_handle_t memspace);
1195 extern omp_memspace_handle_t
1196 __kmp_get_submemspace(omp_memspace_handle_t memspace, int num_resources,
1197  int *resources);
1198 
1199 /* ------------------------------------------------------------------------ */
1200 
1201 #if ENABLE_LIBOMPTARGET
1202 extern void __kmp_init_target_task();
1203 #endif
1204 
1205 /* ------------------------------------------------------------------------ */
1206 
1207 #define KMP_UINT64_MAX \
1208  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1209 
1210 #define KMP_MIN_NTH 1
1211 
1212 #ifndef KMP_MAX_NTH
1213 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1214 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1215 #else
1216 #ifdef __ve__
1217 // VE's pthread supports only up to 64 threads per a VE process.
1218 // Please check p. 14 of following documentation for more details.
1219 // https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1220 #define KMP_MAX_NTH 64
1221 #else
1222 #define KMP_MAX_NTH INT_MAX
1223 #endif
1224 #endif
1225 #endif /* KMP_MAX_NTH */
1226 
1227 #ifdef PTHREAD_STACK_MIN
1228 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1229 #else
1230 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1231 #endif
1232 
1233 #if KMP_OS_AIX && KMP_ARCH_PPC
1234 #define KMP_MAX_STKSIZE 0x10000000 /* 256Mb max size on 32-bit AIX */
1235 #else
1236 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1237 #endif
1238 
1239 #if KMP_ARCH_X86
1240 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1241 #elif KMP_ARCH_X86_64
1242 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1243 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1244 #elif KMP_ARCH_VE
1245 // Minimum stack size for pthread for VE is 4MB.
1246 // https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1247 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1248 #elif KMP_OS_AIX
1249 // The default stack size for worker threads on AIX is 4MB.
1250 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1251 #else
1252 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1253 #endif
1254 
1255 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1256 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1257 #define KMP_MAX_MALLOC_POOL_INCR \
1258  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1259 
1260 #define KMP_MIN_STKOFFSET (0)
1261 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1262 #if KMP_OS_DARWIN
1263 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1264 #else
1265 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1266 #endif
1267 
1268 #define KMP_MIN_STKPADDING (0)
1269 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1270 
1271 #define KMP_BLOCKTIME_MULTIPLIER \
1272  (1000000) /* number of blocktime units per second */
1273 #define KMP_MIN_BLOCKTIME (0)
1274 #define KMP_MAX_BLOCKTIME \
1275  (INT_MAX) /* Must be this for "infinite" setting the work */
1276 
1277 /* __kmp_blocktime is in microseconds */
1278 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1279 
1280 #if KMP_USE_MONITOR
1281 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1282 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1283 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1284 
1285 /* Calculate new number of monitor wakeups for a specific block time based on
1286  previous monitor_wakeups. Only allow increasing number of wakeups */
1287 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1288  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1289  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1290  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1291  ? (monitor_wakeups) \
1292  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1293 
1294 /* Calculate number of intervals for a specific block time based on
1295  monitor_wakeups */
1296 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1297  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1298  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1299 #else
1300 #define KMP_BLOCKTIME(team, tid) \
1301  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1302 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1303 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1304 extern kmp_uint64 __kmp_ticks_per_msec;
1305 extern kmp_uint64 __kmp_ticks_per_usec;
1306 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1307 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1308 #else
1309 #define KMP_NOW() __kmp_hardware_timestamp()
1310 #endif
1311 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1312  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1313 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1314 #else
1315 // System time is retrieved sporadically while blocking.
1316 extern kmp_uint64 __kmp_now_nsec();
1317 #define KMP_NOW() __kmp_now_nsec()
1318 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1319  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1320 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1321 #endif
1322 #endif // KMP_USE_MONITOR
1323 
1324 #define KMP_MIN_STATSCOLS 40
1325 #define KMP_MAX_STATSCOLS 4096
1326 #define KMP_DEFAULT_STATSCOLS 80
1327 
1328 #define KMP_MIN_INTERVAL 0
1329 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1330 #define KMP_DEFAULT_INTERVAL 0
1331 
1332 #define KMP_MIN_CHUNK 1
1333 #define KMP_MAX_CHUNK (INT_MAX - 1)
1334 #define KMP_DEFAULT_CHUNK 1
1335 
1336 #define KMP_MIN_DISP_NUM_BUFF 1
1337 #define KMP_DFLT_DISP_NUM_BUFF 7
1338 #define KMP_MAX_DISP_NUM_BUFF 4096
1339 
1340 #define KMP_MAX_ORDERED 8
1341 
1342 #define KMP_MAX_FIELDS 32
1343 
1344 #define KMP_MAX_BRANCH_BITS 31
1345 
1346 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1347 
1348 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1349 
1350 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1351 
1352 /* Minimum number of threads before switch to TLS gtid (experimentally
1353  determined) */
1354 /* josh TODO: what about OS X* tuning? */
1355 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1356 #define KMP_TLS_GTID_MIN 5
1357 #else
1358 #define KMP_TLS_GTID_MIN INT_MAX
1359 #endif
1360 
1361 #define KMP_MASTER_TID(tid) (0 == (tid))
1362 #define KMP_WORKER_TID(tid) (0 != (tid))
1363 
1364 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1365 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1366 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1367 
1368 #ifndef TRUE
1369 #define FALSE 0
1370 #define TRUE (!FALSE)
1371 #endif
1372 
1373 /* NOTE: all of the following constants must be even */
1374 
1375 #if KMP_OS_WINDOWS
1376 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1377 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1378 #elif KMP_OS_LINUX
1379 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1380 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1381 #elif KMP_OS_DARWIN
1382 /* TODO: tune for KMP_OS_DARWIN */
1383 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1384 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1385 #elif KMP_OS_DRAGONFLY
1386 /* TODO: tune for KMP_OS_DRAGONFLY */
1387 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1388 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1389 #elif KMP_OS_FREEBSD
1390 /* TODO: tune for KMP_OS_FREEBSD */
1391 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1392 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1393 #elif KMP_OS_NETBSD
1394 /* TODO: tune for KMP_OS_NETBSD */
1395 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1396 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1397 #elif KMP_OS_OPENBSD
1398 /* TODO: tune for KMP_OS_OPENBSD */
1399 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1400 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1401 #elif KMP_OS_HAIKU
1402 /* TODO: tune for KMP_OS_HAIKU */
1403 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1404 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1405 #elif KMP_OS_HURD
1406 /* TODO: tune for KMP_OS_HURD */
1407 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1408 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1409 #elif KMP_OS_SOLARIS
1410 /* TODO: tune for KMP_OS_SOLARIS */
1411 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1412 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1413 #elif KMP_OS_WASI
1414 /* TODO: tune for KMP_OS_WASI */
1415 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1416 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1417 #elif KMP_OS_AIX
1418 /* TODO: tune for KMP_OS_AIX */
1419 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1420 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1421 #endif
1422 
1423 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1424 typedef struct kmp_cpuid {
1425  kmp_uint32 eax;
1426  kmp_uint32 ebx;
1427  kmp_uint32 ecx;
1428  kmp_uint32 edx;
1429 } kmp_cpuid_t;
1430 
1431 typedef struct kmp_cpuinfo_flags_t {
1432  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1433  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1434  unsigned hybrid : 1;
1435  unsigned reserved : 29; // Ensure size of 32 bits
1436 } kmp_cpuinfo_flags_t;
1437 
1438 typedef struct kmp_cpuinfo {
1439  int initialized; // If 0, other fields are not initialized.
1440  int signature; // CPUID(1).EAX
1441  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1442  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1443  // Model << 4 ) + Model)
1444  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1445  kmp_cpuinfo_flags_t flags;
1446  int apic_id;
1447  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1448  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1449 } kmp_cpuinfo_t;
1450 
1451 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1452 
1453 #if KMP_OS_UNIX
1454 // subleaf is only needed for cache and topology discovery and can be set to
1455 // zero in most cases
1456 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1457  __asm__ __volatile__("cpuid"
1458  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1459  : "a"(leaf), "c"(subleaf));
1460 }
1461 // Load p into FPU control word
1462 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1463  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1464 }
1465 // Store FPU control word into p
1466 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1467  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1468 }
1469 static inline void __kmp_clear_x87_fpu_status_word() {
1470 #if KMP_MIC
1471  // 32-bit protected mode x87 FPU state
1472  struct x87_fpu_state {
1473  unsigned cw;
1474  unsigned sw;
1475  unsigned tw;
1476  unsigned fip;
1477  unsigned fips;
1478  unsigned fdp;
1479  unsigned fds;
1480  };
1481  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1482  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1483  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1484  "fldenv %0\n\t" // load FP env back
1485  : "+m"(fpu_state), "+m"(fpu_state.sw));
1486 #else
1487  __asm__ __volatile__("fnclex");
1488 #endif // KMP_MIC
1489 }
1490 #if __SSE__
1491 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1492 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1493 #else
1494 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1495 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1496 #endif
1497 #else
1498 // Windows still has these as external functions in assembly file
1499 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1500 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1501 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1502 extern void __kmp_clear_x87_fpu_status_word();
1503 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1504 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1505 #endif // KMP_OS_UNIX
1506 
1507 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1508 
1509 // User-level Monitor/Mwait
1510 #if KMP_HAVE_UMWAIT
1511 // We always try for UMWAIT first
1512 #if KMP_HAVE_WAITPKG_INTRINSICS
1513 #if KMP_HAVE_IMMINTRIN_H
1514 #include <immintrin.h>
1515 #elif KMP_HAVE_INTRIN_H
1516 #include <intrin.h>
1517 #endif
1518 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1519 
1520 KMP_ATTRIBUTE_TARGET_WAITPKG
1521 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1522 #if !KMP_HAVE_WAITPKG_INTRINSICS
1523  uint32_t timeHi = uint32_t(counter >> 32);
1524  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1525  char flag;
1526  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1527  "setb %0"
1528  // The "=q" restraint means any register accessible as rl
1529  // in 32-bit mode: a, b, c, and d;
1530  // in 64-bit mode: any integer register
1531  : "=q"(flag)
1532  : "a"(timeLo), "d"(timeHi), "c"(hint)
1533  :);
1534  return flag;
1535 #else
1536  return _tpause(hint, counter);
1537 #endif
1538 }
1539 KMP_ATTRIBUTE_TARGET_WAITPKG
1540 static inline void __kmp_umonitor(void *cacheline) {
1541 #if !KMP_HAVE_WAITPKG_INTRINSICS
1542  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1543  :
1544  : "a"(cacheline)
1545  :);
1546 #else
1547  _umonitor(cacheline);
1548 #endif
1549 }
1550 KMP_ATTRIBUTE_TARGET_WAITPKG
1551 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1552 #if !KMP_HAVE_WAITPKG_INTRINSICS
1553  uint32_t timeHi = uint32_t(counter >> 32);
1554  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1555  char flag;
1556  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1557  "setb %0"
1558  // The "=q" restraint means any register accessible as rl
1559  // in 32-bit mode: a, b, c, and d;
1560  // in 64-bit mode: any integer register
1561  : "=q"(flag)
1562  : "a"(timeLo), "d"(timeHi), "c"(hint)
1563  :);
1564  return flag;
1565 #else
1566  return _umwait(hint, counter);
1567 #endif
1568 }
1569 #elif KMP_HAVE_MWAIT
1570 #if KMP_OS_UNIX
1571 #include <pmmintrin.h>
1572 #else
1573 #include <intrin.h>
1574 #endif
1575 #if KMP_OS_UNIX
1576 __attribute__((target("sse3")))
1577 #endif
1578 static inline void
1579 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1580  _mm_monitor(cacheline, extensions, hints);
1581 }
1582 #if KMP_OS_UNIX
1583 __attribute__((target("sse3")))
1584 #endif
1585 static inline void
1586 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1587  _mm_mwait(extensions, hints);
1588 }
1589 #endif // KMP_HAVE_UMWAIT
1590 
1591 #if KMP_ARCH_X86
1592 extern void __kmp_x86_pause(void);
1593 #elif KMP_MIC
1594 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1595 // regression after removal of extra PAUSE from spin loops. Changing
1596 // the delay from 100 to 300 showed even better performance than double PAUSE
1597 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1598 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1599 #else
1600 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1601 #endif
1602 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1603 #elif KMP_ARCH_PPC64
1604 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1605 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1606 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1607 #define KMP_CPU_PAUSE() \
1608  do { \
1609  KMP_PPC64_PRI_LOW(); \
1610  KMP_PPC64_PRI_MED(); \
1611  KMP_PPC64_PRI_LOC_MB(); \
1612  } while (0)
1613 #else
1614 #define KMP_CPU_PAUSE() /* nothing to do */
1615 #endif
1616 
1617 #define KMP_INIT_YIELD(count) \
1618  { (count) = __kmp_yield_init; }
1619 
1620 #define KMP_INIT_BACKOFF(time) \
1621  { (time) = __kmp_pause_init; }
1622 
1623 #define KMP_OVERSUBSCRIBED \
1624  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1625 
1626 #define KMP_TRY_YIELD \
1627  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1628 
1629 #define KMP_TRY_YIELD_OVERSUB \
1630  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1631 
1632 #define KMP_YIELD(cond) \
1633  { \
1634  KMP_CPU_PAUSE(); \
1635  if ((cond) && (KMP_TRY_YIELD)) \
1636  __kmp_yield(); \
1637  }
1638 
1639 #define KMP_YIELD_OVERSUB() \
1640  { \
1641  KMP_CPU_PAUSE(); \
1642  if ((KMP_TRY_YIELD_OVERSUB)) \
1643  __kmp_yield(); \
1644  }
1645 
1646 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1647 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1648 #define KMP_YIELD_SPIN(count) \
1649  { \
1650  KMP_CPU_PAUSE(); \
1651  if (KMP_TRY_YIELD) { \
1652  (count) -= 2; \
1653  if (!(count)) { \
1654  __kmp_yield(); \
1655  (count) = __kmp_yield_next; \
1656  } \
1657  } \
1658  }
1659 
1660 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1661 // (C0.2) state, which improves performance of other SMT threads on the same
1662 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1663 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1664 // available, fall back to the regular CPU pause and yield combination.
1665 #if KMP_HAVE_UMWAIT
1666 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1667 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1668  { \
1669  if (__kmp_tpause_enabled) { \
1670  if (KMP_OVERSUBSCRIBED) { \
1671  __kmp_tpause(0, (time)); \
1672  } else { \
1673  __kmp_tpause(__kmp_tpause_hint, (time)); \
1674  } \
1675  (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1676  } else { \
1677  KMP_CPU_PAUSE(); \
1678  if ((KMP_TRY_YIELD_OVERSUB)) { \
1679  __kmp_yield(); \
1680  } else if (__kmp_use_yield == 1) { \
1681  (count) -= 2; \
1682  if (!(count)) { \
1683  __kmp_yield(); \
1684  (count) = __kmp_yield_next; \
1685  } \
1686  } \
1687  } \
1688  }
1689 #else
1690 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1691  { \
1692  KMP_CPU_PAUSE(); \
1693  if ((KMP_TRY_YIELD_OVERSUB)) \
1694  __kmp_yield(); \
1695  else if (__kmp_use_yield == 1) { \
1696  (count) -= 2; \
1697  if (!(count)) { \
1698  __kmp_yield(); \
1699  (count) = __kmp_yield_next; \
1700  } \
1701  } \
1702  }
1703 #endif // KMP_HAVE_UMWAIT
1704 
1705 /* ------------------------------------------------------------------------ */
1706 /* Support datatypes for the orphaned construct nesting checks. */
1707 /* ------------------------------------------------------------------------ */
1708 
1709 /* When adding to this enum, add its corresponding string in cons_text_c[]
1710  * array in kmp_error.cpp */
1711 enum cons_type {
1712  ct_none,
1713  ct_parallel,
1714  ct_pdo,
1715  ct_pdo_ordered,
1716  ct_psections,
1717  ct_psingle,
1718  ct_critical,
1719  ct_ordered_in_parallel,
1720  ct_ordered_in_pdo,
1721  ct_master,
1722  ct_reduce,
1723  ct_barrier,
1724  ct_masked
1725 };
1726 
1727 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1728 
1729 struct cons_data {
1730  ident_t const *ident;
1731  enum cons_type type;
1732  int prev;
1733  kmp_user_lock_p
1734  name; /* address exclusively for critical section name comparison */
1735 };
1736 
1737 struct cons_header {
1738  int p_top, w_top, s_top;
1739  int stack_size, stack_top;
1740  struct cons_data *stack_data;
1741 };
1742 
1743 struct kmp_region_info {
1744  char *text;
1745  int offset[KMP_MAX_FIELDS];
1746  int length[KMP_MAX_FIELDS];
1747 };
1748 
1749 /* ---------------------------------------------------------------------- */
1750 /* ---------------------------------------------------------------------- */
1751 
1752 #if KMP_OS_WINDOWS
1753 typedef HANDLE kmp_thread_t;
1754 typedef DWORD kmp_key_t;
1755 #endif /* KMP_OS_WINDOWS */
1756 
1757 #if KMP_OS_UNIX
1758 typedef pthread_t kmp_thread_t;
1759 typedef pthread_key_t kmp_key_t;
1760 #endif
1761 
1762 extern kmp_key_t __kmp_gtid_threadprivate_key;
1763 
1764 typedef struct kmp_sys_info {
1765  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1766  long minflt; /* the number of page faults serviced without any I/O */
1767  long majflt; /* the number of page faults serviced that required I/O */
1768  long nswap; /* the number of times a process was "swapped" out of memory */
1769  long inblock; /* the number of times the file system had to perform input */
1770  long oublock; /* the number of times the file system had to perform output */
1771  long nvcsw; /* the number of times a context switch was voluntarily */
1772  long nivcsw; /* the number of times a context switch was forced */
1773 } kmp_sys_info_t;
1774 
1775 #if USE_ITT_BUILD
1776 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1777 // required type here. Later we will check the type meets requirements.
1778 typedef int kmp_itt_mark_t;
1779 #define KMP_ITT_DEBUG 0
1780 #endif /* USE_ITT_BUILD */
1781 
1782 typedef kmp_int32 kmp_critical_name[8];
1783 
1793 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1794 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1795  ...);
1796 
1801 /* ---------------------------------------------------------------------------
1802  */
1803 /* Threadprivate initialization/finalization function declarations */
1804 
1805 /* for non-array objects: __kmpc_threadprivate_register() */
1806 
1811 typedef void *(*kmpc_ctor)(void *);
1812 
1817 typedef void (*kmpc_dtor)(
1818  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1819  compiler */
1824 typedef void *(*kmpc_cctor)(void *, void *);
1825 
1826 /* for array objects: __kmpc_threadprivate_register_vec() */
1827 /* First arg: "this" pointer */
1828 /* Last arg: number of array elements */
1834 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1840 typedef void (*kmpc_dtor_vec)(void *, size_t);
1846 typedef void *(*kmpc_cctor_vec)(void *, void *,
1847  size_t); /* function unused by compiler */
1848 
1853 /* keeps tracked of threadprivate cache allocations for cleanup later */
1854 typedef struct kmp_cached_addr {
1855  void **addr; /* address of allocated cache */
1856  void ***compiler_cache; /* pointer to compiler's cache */
1857  void *data; /* pointer to global data */
1858  struct kmp_cached_addr *next; /* pointer to next cached address */
1859 } kmp_cached_addr_t;
1860 
1861 struct private_data {
1862  struct private_data *next; /* The next descriptor in the list */
1863  void *data; /* The data buffer for this descriptor */
1864  int more; /* The repeat count for this descriptor */
1865  size_t size; /* The data size for this descriptor */
1866 };
1867 
1868 struct private_common {
1869  struct private_common *next;
1870  struct private_common *link;
1871  void *gbl_addr;
1872  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1873  size_t cmn_size;
1874 };
1875 
1876 struct shared_common {
1877  struct shared_common *next;
1878  struct private_data *pod_init;
1879  void *obj_init;
1880  void *gbl_addr;
1881  union {
1882  kmpc_ctor ctor;
1883  kmpc_ctor_vec ctorv;
1884  } ct;
1885  union {
1886  kmpc_cctor cctor;
1887  kmpc_cctor_vec cctorv;
1888  } cct;
1889  union {
1890  kmpc_dtor dtor;
1891  kmpc_dtor_vec dtorv;
1892  } dt;
1893  size_t vec_len;
1894  int is_vec;
1895  size_t cmn_size;
1896 };
1897 
1898 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1899 #define KMP_HASH_TABLE_SIZE \
1900  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1901 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1902 #define KMP_HASH(x) \
1903  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1904 
1905 struct common_table {
1906  struct private_common *data[KMP_HASH_TABLE_SIZE];
1907 };
1908 
1909 struct shared_table {
1910  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1911 };
1912 
1913 /* ------------------------------------------------------------------------ */
1914 
1915 #if KMP_USE_HIER_SCHED
1916 // Shared barrier data that exists inside a single unit of the scheduling
1917 // hierarchy
1918 typedef struct kmp_hier_private_bdata_t {
1919  kmp_int32 num_active;
1920  kmp_uint64 index;
1921  kmp_uint64 wait_val[2];
1922 } kmp_hier_private_bdata_t;
1923 #endif
1924 
1925 typedef struct kmp_sched_flags {
1926  unsigned ordered : 1;
1927  unsigned nomerge : 1;
1928  unsigned contains_last : 1;
1929  unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1930  unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1931  unsigned unused : 27;
1932 } kmp_sched_flags_t;
1933 
1934 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1935 
1936 #if KMP_STATIC_STEAL_ENABLED
1937 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1938  kmp_int32 count;
1939  kmp_int32 ub;
1940  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1941  kmp_int32 lb;
1942  kmp_int32 st;
1943  kmp_int32 tc;
1944  kmp_lock_t *steal_lock; // lock used for chunk stealing
1945 
1946  kmp_uint32 ordered_lower;
1947  kmp_uint32 ordered_upper;
1948 
1949  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1950  // a) parm3 is properly aligned and
1951  // b) all parm1-4 are on the same cache line.
1952  // Because of parm1-4 are used together, performance seems to be better
1953  // if they are on the same cache line (not measured though).
1954 
1955  struct KMP_ALIGN(32) {
1956  kmp_int32 parm1;
1957  kmp_int32 parm2;
1958  kmp_int32 parm3;
1959  kmp_int32 parm4;
1960  };
1961 
1962 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1963  kmp_uint32 pchunks;
1964  kmp_uint32 num_procs_with_pcore;
1965  kmp_int32 first_thread_with_ecore;
1966 #endif
1967 #if KMP_OS_WINDOWS
1968  kmp_int32 last_upper;
1969 #endif /* KMP_OS_WINDOWS */
1970 } dispatch_private_info32_t;
1971 
1972 #if CACHE_LINE <= 128
1973 KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1974 #endif
1975 
1976 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1977  kmp_int64 count; // current chunk number for static & static-steal scheduling
1978  kmp_int64 ub; /* upper-bound */
1979  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1980  kmp_int64 lb; /* lower-bound */
1981  kmp_int64 st; /* stride */
1982  kmp_int64 tc; /* trip count (number of iterations) */
1983  kmp_lock_t *steal_lock; // lock used for chunk stealing
1984 
1985  kmp_uint64 ordered_lower;
1986  kmp_uint64 ordered_upper;
1987  /* parm[1-4] are used in different ways by different scheduling algorithms */
1988 
1989  // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1990  // a) parm3 is properly aligned and
1991  // b) all parm1-4 are in the same cache line.
1992  // Because of parm1-4 are used together, performance seems to be better
1993  // if they are in the same line (not measured though).
1994  struct KMP_ALIGN(32) {
1995  kmp_int64 parm1;
1996  kmp_int64 parm2;
1997  kmp_int64 parm3;
1998  kmp_int64 parm4;
1999  };
2000 
2001 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
2002  kmp_uint64 pchunks;
2003  kmp_uint64 num_procs_with_pcore;
2004  kmp_int64 first_thread_with_ecore;
2005 #endif
2006 
2007 #if KMP_OS_WINDOWS
2008  kmp_int64 last_upper;
2009 #endif /* KMP_OS_WINDOWS */
2010 } dispatch_private_info64_t;
2011 
2012 #if CACHE_LINE <= 128
2013 KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
2014 #endif
2015 
2016 #else /* KMP_STATIC_STEAL_ENABLED */
2017 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
2018  kmp_int32 lb;
2019  kmp_int32 ub;
2020  kmp_int32 st;
2021  kmp_int32 tc;
2022 
2023  kmp_int32 parm1;
2024  kmp_int32 parm2;
2025  kmp_int32 parm3;
2026  kmp_int32 parm4;
2027 
2028  kmp_int32 count;
2029 
2030  kmp_uint32 ordered_lower;
2031  kmp_uint32 ordered_upper;
2032 #if KMP_OS_WINDOWS
2033  kmp_int32 last_upper;
2034 #endif /* KMP_OS_WINDOWS */
2035 } dispatch_private_info32_t;
2036 
2037 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
2038  kmp_int64 lb; /* lower-bound */
2039  kmp_int64 ub; /* upper-bound */
2040  kmp_int64 st; /* stride */
2041  kmp_int64 tc; /* trip count (number of iterations) */
2042 
2043  /* parm[1-4] are used in different ways by different scheduling algorithms */
2044  kmp_int64 parm1;
2045  kmp_int64 parm2;
2046  kmp_int64 parm3;
2047  kmp_int64 parm4;
2048 
2049  kmp_int64 count; /* current chunk number for static scheduling */
2050 
2051  kmp_uint64 ordered_lower;
2052  kmp_uint64 ordered_upper;
2053 #if KMP_OS_WINDOWS
2054  kmp_int64 last_upper;
2055 #endif /* KMP_OS_WINDOWS */
2056 } dispatch_private_info64_t;
2057 #endif /* KMP_STATIC_STEAL_ENABLED */
2058 
2059 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2060  union private_info {
2061  dispatch_private_info32_t p32;
2062  dispatch_private_info64_t p64;
2063  } u;
2064  enum sched_type schedule; /* scheduling algorithm */
2065  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2066  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2067  kmp_int32 ordered_bumped;
2068  // Stack of buffers for nest of serial regions
2069  struct dispatch_private_info *next;
2070  kmp_int32 type_size; /* the size of types in private_info */
2071 #if KMP_USE_HIER_SCHED
2072  kmp_int32 hier_id;
2073  void *parent; /* hierarchical scheduling parent pointer */
2074 #endif
2075  enum cons_type pushed_ws;
2076 } dispatch_private_info_t;
2077 
2078 typedef struct dispatch_shared_info32 {
2079  /* chunk index under dynamic, number of idle threads under static-steal;
2080  iteration index otherwise */
2081  volatile kmp_uint32 iteration;
2082  volatile kmp_int32 num_done;
2083  volatile kmp_uint32 ordered_iteration;
2084  // Dummy to retain the structure size after making ordered_iteration scalar
2085  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2086 } dispatch_shared_info32_t;
2087 
2088 typedef struct dispatch_shared_info64 {
2089  /* chunk index under dynamic, number of idle threads under static-steal;
2090  iteration index otherwise */
2091  volatile kmp_uint64 iteration;
2092  volatile kmp_int64 num_done;
2093  volatile kmp_uint64 ordered_iteration;
2094  // Dummy to retain the structure size after making ordered_iteration scalar
2095  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2096 } dispatch_shared_info64_t;
2097 
2098 typedef struct dispatch_shared_info {
2099  union shared_info {
2100  dispatch_shared_info32_t s32;
2101  dispatch_shared_info64_t s64;
2102  } u;
2103  volatile kmp_uint32 buffer_index;
2104  volatile kmp_int32 doacross_buf_idx; // teamwise index
2105  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2106  kmp_int32 doacross_num_done; // count finished threads
2107 #if KMP_USE_HIER_SCHED
2108  void *hier;
2109 #endif
2110 #if KMP_USE_HWLOC
2111  // When linking with libhwloc, the ORDERED EPCC test slows down on big
2112  // machines (> 48 cores). Performance analysis showed that a cache thrash
2113  // was occurring and this padding helps alleviate the problem.
2114  char padding[64];
2115 #endif
2116 } dispatch_shared_info_t;
2117 
2118 typedef struct kmp_disp {
2119  /* Vector for ORDERED SECTION */
2120  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2121  /* Vector for END ORDERED SECTION */
2122  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2123 
2124  dispatch_shared_info_t *th_dispatch_sh_current;
2125  dispatch_private_info_t *th_dispatch_pr_current;
2126 
2127  dispatch_private_info_t *th_disp_buffer;
2128  kmp_uint32 th_disp_index;
2129  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2130  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2131  kmp_int64 *th_doacross_info; // info on loop bounds
2132 #if KMP_USE_INTERNODE_ALIGNMENT
2133  char more_padding[INTERNODE_CACHE_LINE];
2134 #endif
2135 } kmp_disp_t;
2136 
2137 /* ------------------------------------------------------------------------ */
2138 /* Barrier stuff */
2139 
2140 /* constants for barrier state update */
2141 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2142 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2143 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2144 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2145 
2146 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2147 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2148 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2149 
2150 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2151 #error "Barrier sleep bit must be smaller than barrier bump bit"
2152 #endif
2153 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2154 #error "Barrier unused bit must be smaller than barrier bump bit"
2155 #endif
2156 
2157 // Constants for release barrier wait state: currently, hierarchical only
2158 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2159 #define KMP_BARRIER_OWN_FLAG \
2160  1 // Normal state; worker waiting on own b_go flag in release
2161 #define KMP_BARRIER_PARENT_FLAG \
2162  2 // Special state; worker waiting on parent's b_go flag in release
2163 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2164  3 // Special state; tells worker to shift from parent to own b_go
2165 #define KMP_BARRIER_SWITCHING \
2166  4 // Special state; worker resets appropriate flag on wake-up
2167 
2168 #define KMP_NOT_SAFE_TO_REAP \
2169  0 // Thread th_reap_state: not safe to reap (tasking)
2170 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2171 
2172 // The flag_type describes the storage used for the flag.
2173 enum flag_type {
2174  flag32,
2175  flag64,
2176  atomic_flag64,
2177  flag_oncore,
2178  flag_unset
2179 };
2180 
2181 enum barrier_type {
2182  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2183  barriers if enabled) */
2184  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2185 #if KMP_FAST_REDUCTION_BARRIER
2186  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2187 #endif // KMP_FAST_REDUCTION_BARRIER
2188  bs_last_barrier /* Just a placeholder to mark the end */
2189 };
2190 
2191 // to work with reduction barriers just like with plain barriers
2192 #if !KMP_FAST_REDUCTION_BARRIER
2193 #define bs_reduction_barrier bs_plain_barrier
2194 #endif // KMP_FAST_REDUCTION_BARRIER
2195 
2196 typedef enum kmp_bar_pat { /* Barrier communication patterns */
2197  bp_linear_bar =
2198  0, /* Single level (degenerate) tree */
2199  bp_tree_bar =
2200  1, /* Balanced tree with branching factor 2^n */
2201  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2202  branching factor 2^n */
2203  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2204  bp_dist_bar = 4, /* Distributed barrier */
2205  bp_last_bar /* Placeholder to mark the end */
2206 } kmp_bar_pat_e;
2207 
2208 #define KMP_BARRIER_ICV_PUSH 1
2209 
2210 /* Record for holding the values of the internal controls stack records */
2211 typedef struct kmp_internal_control {
2212  int serial_nesting_level; /* corresponds to the value of the
2213  th_team_serialized field */
2214  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2215  thread) */
2216  kmp_int8
2217  bt_set; /* internal control for whether blocktime is explicitly set */
2218  int blocktime; /* internal control for blocktime */
2219 #if KMP_USE_MONITOR
2220  int bt_intervals; /* internal control for blocktime intervals */
2221 #endif
2222  int nproc; /* internal control for #threads for next parallel region (per
2223  thread) */
2224  int thread_limit; /* internal control for thread-limit-var */
2225  int task_thread_limit; /* internal control for thread-limit-var of a task*/
2226  int max_active_levels; /* internal control for max_active_levels */
2227  kmp_r_sched_t
2228  sched; /* internal control for runtime schedule {sched,chunk} pair */
2229  kmp_proc_bind_t proc_bind; /* internal control for affinity */
2230  kmp_int32 default_device; /* internal control for default device */
2231  struct kmp_internal_control *next;
2232 } kmp_internal_control_t;
2233 
2234 static inline void copy_icvs(kmp_internal_control_t *dst,
2235  kmp_internal_control_t *src) {
2236  *dst = *src;
2237 }
2238 
2239 /* Thread barrier needs volatile barrier fields */
2240 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2241  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2242  // uses of it). It is not explicitly aligned below, because we *don't* want
2243  // it to be padded -- instead, we fit b_go into the same cache line with
2244  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2245  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2246  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2247  // same NGO store
2248  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2249  KMP_ALIGN_CACHE volatile kmp_uint64
2250  b_arrived; // STATE => task reached synch point.
2251  kmp_uint32 *skip_per_level;
2252  kmp_uint32 my_level;
2253  kmp_int32 parent_tid;
2254  kmp_int32 old_tid;
2255  kmp_uint32 depth;
2256  struct kmp_bstate *parent_bar;
2257  kmp_team_t *team;
2258  kmp_uint64 leaf_state;
2259  kmp_uint32 nproc;
2260  kmp_uint8 base_leaf_kids;
2261  kmp_uint8 leaf_kids;
2262  kmp_uint8 offset;
2263  kmp_uint8 wait_flag;
2264  kmp_uint8 use_oncore_barrier;
2265 #if USE_DEBUGGER
2266  // The following field is intended for the debugger solely. Only the worker
2267  // thread itself accesses this field: the worker increases it by 1 when it
2268  // arrives to a barrier.
2269  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2270 #endif /* USE_DEBUGGER */
2271 } kmp_bstate_t;
2272 
2273 union KMP_ALIGN_CACHE kmp_barrier_union {
2274  double b_align; /* use worst case alignment */
2275  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2276  kmp_bstate_t bb;
2277 };
2278 
2279 typedef union kmp_barrier_union kmp_balign_t;
2280 
2281 /* Team barrier needs only non-volatile arrived counter */
2282 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2283  double b_align; /* use worst case alignment */
2284  char b_pad[CACHE_LINE];
2285  struct {
2286  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2287 #if USE_DEBUGGER
2288  // The following two fields are indended for the debugger solely. Only
2289  // primary thread of the team accesses these fields: the first one is
2290  // increased by 1 when the primary thread arrives to a barrier, the second
2291  // one is increased by one when all the threads arrived.
2292  kmp_uint b_master_arrived;
2293  kmp_uint b_team_arrived;
2294 #endif
2295  };
2296 };
2297 
2298 typedef union kmp_barrier_team_union kmp_balign_team_t;
2299 
2300 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2301  threads when a condition changes. This is to workaround an NPTL bug where
2302  padding was added to pthread_cond_t which caused the initialization routine
2303  to write outside of the structure if compiled on pre-NPTL threads. */
2304 #if KMP_OS_WINDOWS
2305 typedef struct kmp_win32_mutex {
2306  /* The Lock */
2307  CRITICAL_SECTION cs;
2308 } kmp_win32_mutex_t;
2309 
2310 typedef struct kmp_win32_cond {
2311  /* Count of the number of waiters. */
2312  int waiters_count_;
2313 
2314  /* Serialize access to <waiters_count_> */
2315  kmp_win32_mutex_t waiters_count_lock_;
2316 
2317  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2318  int release_count_;
2319 
2320  /* Keeps track of the current "generation" so that we don't allow */
2321  /* one thread to steal all the "releases" from the broadcast. */
2322  int wait_generation_count_;
2323 
2324  /* A manual-reset event that's used to block and release waiting threads. */
2325  HANDLE event_;
2326 } kmp_win32_cond_t;
2327 #endif
2328 
2329 #if KMP_OS_UNIX
2330 
2331 union KMP_ALIGN_CACHE kmp_cond_union {
2332  double c_align;
2333  char c_pad[CACHE_LINE];
2334  pthread_cond_t c_cond;
2335 };
2336 
2337 typedef union kmp_cond_union kmp_cond_align_t;
2338 
2339 union KMP_ALIGN_CACHE kmp_mutex_union {
2340  double m_align;
2341  char m_pad[CACHE_LINE];
2342  pthread_mutex_t m_mutex;
2343 };
2344 
2345 typedef union kmp_mutex_union kmp_mutex_align_t;
2346 
2347 #endif /* KMP_OS_UNIX */
2348 
2349 typedef struct kmp_desc_base {
2350  void *ds_stackbase;
2351  size_t ds_stacksize;
2352  int ds_stackgrow;
2353  kmp_thread_t ds_thread;
2354  volatile int ds_tid;
2355  int ds_gtid;
2356 #if KMP_OS_WINDOWS
2357  volatile int ds_alive;
2358  DWORD ds_thread_id;
2359 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2360  However, debugger support (libomp_db) cannot work with handles, because they
2361  uncomparable. For example, debugger requests info about thread with handle h.
2362  h is valid within debugger process, and meaningless within debugee process.
2363  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2364  within debugee process, but it is a *new* handle which does *not* equal to
2365  any other handle in debugee... The only way to compare handles is convert
2366  them to system-wide ids. GetThreadId() function is available only in
2367  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2368  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2369  thread id by call to GetCurrentThreadId() from within the thread and save it
2370  to let libomp_db identify threads. */
2371 #endif /* KMP_OS_WINDOWS */
2372 } kmp_desc_base_t;
2373 
2374 typedef union KMP_ALIGN_CACHE kmp_desc {
2375  double ds_align; /* use worst case alignment */
2376  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2377  kmp_desc_base_t ds;
2378 } kmp_desc_t;
2379 
2380 typedef struct kmp_local {
2381  volatile int this_construct; /* count of single's encountered by thread */
2382  void *reduce_data;
2383 #if KMP_USE_BGET
2384  void *bget_data;
2385  void *bget_list;
2386 #if !USE_CMP_XCHG_FOR_BGET
2387 #ifdef USE_QUEUING_LOCK_FOR_BGET
2388  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2389 #else
2390  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2391 // bootstrap lock so we can use it at library
2392 // shutdown.
2393 #endif /* USE_LOCK_FOR_BGET */
2394 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2395 #endif /* KMP_USE_BGET */
2396 
2397  PACKED_REDUCTION_METHOD_T
2398  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2399  __kmpc_end_reduce*() */
2400 
2401 } kmp_local_t;
2402 
2403 #define KMP_CHECK_UPDATE(a, b) \
2404  if ((a) != (b)) \
2405  (a) = (b)
2406 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2407  if ((a) != (b)) \
2408  TCW_SYNC_PTR((a), (b))
2409 
2410 #define get__blocktime(xteam, xtid) \
2411  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2412 #define get__bt_set(xteam, xtid) \
2413  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2414 #if KMP_USE_MONITOR
2415 #define get__bt_intervals(xteam, xtid) \
2416  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2417 #endif
2418 
2419 #define get__dynamic_2(xteam, xtid) \
2420  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2421 #define get__nproc_2(xteam, xtid) \
2422  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2423 #define get__sched_2(xteam, xtid) \
2424  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2425 
2426 #define set__blocktime_team(xteam, xtid, xval) \
2427  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2428  (xval))
2429 
2430 #if KMP_USE_MONITOR
2431 #define set__bt_intervals_team(xteam, xtid, xval) \
2432  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2433  (xval))
2434 #endif
2435 
2436 #define set__bt_set_team(xteam, xtid, xval) \
2437  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2438 
2439 #define set__dynamic(xthread, xval) \
2440  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2441 #define get__dynamic(xthread) \
2442  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2443 
2444 #define set__nproc(xthread, xval) \
2445  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2446 
2447 #define set__thread_limit(xthread, xval) \
2448  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2449 
2450 #define set__max_active_levels(xthread, xval) \
2451  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2452 
2453 #define get__max_active_levels(xthread) \
2454  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2455 
2456 #define set__sched(xthread, xval) \
2457  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2458 
2459 #define set__proc_bind(xthread, xval) \
2460  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2461 #define get__proc_bind(xthread) \
2462  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2463 
2464 // OpenMP tasking data structures
2465 
2466 typedef enum kmp_tasking_mode {
2467  tskm_immediate_exec = 0,
2468  tskm_extra_barrier = 1,
2469  tskm_task_teams = 2,
2470  tskm_max = 2
2471 } kmp_tasking_mode_t;
2472 
2473 extern kmp_tasking_mode_t
2474  __kmp_tasking_mode; /* determines how/when to execute tasks */
2475 extern int __kmp_task_stealing_constraint;
2476 extern int __kmp_enable_task_throttling;
2477 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2478 // specified, defaults to 0 otherwise
2479 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2480 extern kmp_int32 __kmp_max_task_priority;
2481 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2482 extern kmp_uint64 __kmp_taskloop_min_tasks;
2483 
2484 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2485  taskdata first */
2486 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2487 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2488 
2489 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2490 // were spawned and queued since the previous barrier release.
2491 #define KMP_TASKING_ENABLED(task_team) \
2492  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2500 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2501 
2502 typedef union kmp_cmplrdata {
2503  kmp_int32 priority;
2504  kmp_routine_entry_t
2505  destructors; /* pointer to function to invoke deconstructors of
2506  firstprivate C++ objects */
2507  /* future data */
2508 } kmp_cmplrdata_t;
2509 
2510 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2513 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2514  void *shareds;
2515  kmp_routine_entry_t
2516  routine;
2517  kmp_int32 part_id;
2518  kmp_cmplrdata_t
2519  data1; /* Two known optional additions: destructors and priority */
2520  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2521  /* future data */
2522  /* private vars */
2523 } kmp_task_t;
2524 
2529 typedef struct kmp_taskgroup {
2530  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2531  std::atomic<kmp_int32>
2532  cancel_request; // request for cancellation of this taskgroup
2533  struct kmp_taskgroup *parent; // parent taskgroup
2534  // Block of data to perform task reduction
2535  void *reduce_data; // reduction related info
2536  kmp_int32 reduce_num_data; // number of data items to reduce
2537  uintptr_t *gomp_data; // gomp reduction data
2538 } kmp_taskgroup_t;
2539 
2540 // forward declarations
2541 typedef union kmp_depnode kmp_depnode_t;
2542 typedef struct kmp_depnode_list kmp_depnode_list_t;
2543 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2544 
2545 // macros for checking dep flag as an integer
2546 #define KMP_DEP_IN 0x1
2547 #define KMP_DEP_OUT 0x2
2548 #define KMP_DEP_INOUT 0x3
2549 #define KMP_DEP_MTX 0x4
2550 #define KMP_DEP_SET 0x8
2551 #define KMP_DEP_ALL 0x80
2552 // Compiler sends us this info. Note: some test cases contain an explicit copy
2553 // of this struct and should be in sync with any changes here.
2554 typedef struct kmp_depend_info {
2555  kmp_intptr_t base_addr;
2556  size_t len;
2557  union {
2558  kmp_uint8 flag; // flag as an unsigned char
2559  struct { // flag as a set of 8 bits
2560 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2561  /* Same fields as in the #else branch, but in reverse order */
2562  unsigned all : 1;
2563  unsigned unused : 3;
2564  unsigned set : 1;
2565  unsigned mtx : 1;
2566  unsigned out : 1;
2567  unsigned in : 1;
2568 #else
2569  unsigned in : 1;
2570  unsigned out : 1;
2571  unsigned mtx : 1;
2572  unsigned set : 1;
2573  unsigned unused : 3;
2574  unsigned all : 1;
2575 #endif
2576  } flags;
2577  };
2578 } kmp_depend_info_t;
2579 
2580 // Internal structures to work with task dependencies:
2581 struct kmp_depnode_list {
2582  kmp_depnode_t *node;
2583  kmp_depnode_list_t *next;
2584 };
2585 
2586 // Max number of mutexinoutset dependencies per node
2587 #define MAX_MTX_DEPS 4
2588 
2589 typedef struct kmp_base_depnode {
2590  kmp_depnode_list_t *successors; /* used under lock */
2591  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2592  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2593  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2594  kmp_lock_t lock; /* guards shared fields: task, successors */
2595 #if KMP_SUPPORT_GRAPH_OUTPUT
2596  kmp_uint32 id;
2597 #endif
2598  std::atomic<kmp_int32> npredecessors;
2599  std::atomic<kmp_int32> nrefs;
2600 } kmp_base_depnode_t;
2601 
2602 union KMP_ALIGN_CACHE kmp_depnode {
2603  double dn_align; /* use worst case alignment */
2604  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2605  kmp_base_depnode_t dn;
2606 };
2607 
2608 struct kmp_dephash_entry {
2609  kmp_intptr_t addr;
2610  kmp_depnode_t *last_out;
2611  kmp_depnode_list_t *last_set;
2612  kmp_depnode_list_t *prev_set;
2613  kmp_uint8 last_flag;
2614  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2615  kmp_dephash_entry_t *next_in_bucket;
2616 };
2617 
2618 typedef struct kmp_dephash {
2619  kmp_dephash_entry_t **buckets;
2620  size_t size;
2621  kmp_depnode_t *last_all;
2622  size_t generation;
2623  kmp_uint32 nelements;
2624  kmp_uint32 nconflicts;
2625 } kmp_dephash_t;
2626 
2627 typedef struct kmp_task_affinity_info {
2628  kmp_intptr_t base_addr;
2629  size_t len;
2630  struct {
2631  bool flag1 : 1;
2632  bool flag2 : 1;
2633  kmp_int32 reserved : 30;
2634  } flags;
2635 } kmp_task_affinity_info_t;
2636 
2637 typedef enum kmp_event_type_t {
2638  KMP_EVENT_UNINITIALIZED = 0,
2639  KMP_EVENT_ALLOW_COMPLETION = 1
2640 } kmp_event_type_t;
2641 
2642 typedef struct {
2643  kmp_event_type_t type;
2644  kmp_tas_lock_t lock;
2645  union {
2646  kmp_task_t *task;
2647  } ed;
2648 } kmp_event_t;
2649 
2650 #if OMPX_TASKGRAPH
2651 // Initial number of allocated nodes while recording
2652 #define INIT_MAPSIZE 50
2653 
2654 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2655  unsigned nowait : 1;
2656  unsigned re_record : 1;
2657  unsigned reserved : 30;
2658 } kmp_taskgraph_flags_t;
2659 
2661 typedef struct kmp_node_info {
2662  kmp_task_t *task; // Pointer to the actual task
2663  kmp_int32 *successors; // Array of the succesors ids
2664  kmp_int32 nsuccessors; // Number of succesors of the node
2665  std::atomic<kmp_int32>
2666  npredecessors_counter; // Number of predessors on the fly
2667  kmp_int32 npredecessors; // Total number of predecessors
2668  kmp_int32 successors_size; // Number of allocated succesors ids
2669  kmp_taskdata_t *parent_task; // Parent implicit task
2670 } kmp_node_info_t;
2671 
2673 typedef enum kmp_tdg_status {
2674  KMP_TDG_NONE = 0,
2675  KMP_TDG_RECORDING = 1,
2676  KMP_TDG_READY = 2
2677 } kmp_tdg_status_t;
2678 
2680 typedef struct kmp_tdg_info {
2681  kmp_int32 tdg_id; // Unique idenfifier of the TDG
2682  kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2683  kmp_int32 map_size; // Number of allocated TDG nodes
2684  kmp_int32 num_roots; // Number of roots tasks int the TDG
2685  kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2686  kmp_node_info_t *record_map; // Array of TDG nodes
2687  kmp_tdg_status_t tdg_status =
2688  KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2689  std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2690  kmp_bootstrap_lock_t
2691  graph_lock; // Protect graph attributes when updated via taskloop_recur
2692  // Taskloop reduction related
2693  void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2694  // __kmpc_taskred_init
2695  kmp_int32 rec_num_taskred;
2696 } kmp_tdg_info_t;
2697 
2698 extern int __kmp_tdg_dot;
2699 extern kmp_int32 __kmp_max_tdgs;
2700 extern kmp_tdg_info_t **__kmp_global_tdgs;
2701 extern kmp_int32 __kmp_curr_tdg_idx;
2702 extern kmp_int32 __kmp_successors_size;
2703 extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2704 extern kmp_int32 __kmp_num_tdg;
2705 #endif
2706 
2707 #ifdef BUILD_TIED_TASK_STACK
2708 
2709 /* Tied Task stack definitions */
2710 typedef struct kmp_stack_block {
2711  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2712  struct kmp_stack_block *sb_next;
2713  struct kmp_stack_block *sb_prev;
2714 } kmp_stack_block_t;
2715 
2716 typedef struct kmp_task_stack {
2717  kmp_stack_block_t ts_first_block; // first block of stack entries
2718  kmp_taskdata_t **ts_top; // pointer to the top of stack
2719  kmp_int32 ts_entries; // number of entries on the stack
2720 } kmp_task_stack_t;
2721 
2722 #endif // BUILD_TIED_TASK_STACK
2723 
2724 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2725 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
2726  /* Same fields as in the #else branch, but in reverse order */
2727 #if OMPX_TASKGRAPH
2728  unsigned reserved31 : 5;
2729  unsigned onced : 1;
2730 #else
2731  unsigned reserved31 : 6;
2732 #endif
2733  unsigned target : 1;
2734  unsigned native : 1;
2735  unsigned freed : 1;
2736  unsigned complete : 1;
2737  unsigned executing : 1;
2738  unsigned started : 1;
2739  unsigned team_serial : 1;
2740  unsigned tasking_ser : 1;
2741  unsigned task_serial : 1;
2742  unsigned tasktype : 1;
2743  unsigned reserved : 8;
2744  unsigned hidden_helper : 1;
2745  unsigned detachable : 1;
2746  unsigned priority_specified : 1;
2747  unsigned proxy : 1;
2748  unsigned destructors_thunk : 1;
2749  unsigned merged_if0 : 1;
2750  unsigned final : 1;
2751  unsigned tiedness : 1;
2752 #else
2753  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2754  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2755  unsigned final : 1; /* task is final(1) so execute immediately */
2756  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2757  code path */
2758  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2759  invoke destructors from the runtime */
2760  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2761  context of the RTL) */
2762  unsigned priority_specified : 1; /* set if the compiler provides priority
2763  setting for the task */
2764  unsigned detachable : 1; /* 1 == can detach */
2765  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2766  unsigned reserved : 8; /* reserved for compiler use */
2767 
2768  /* Library flags */ /* Total library flags must be 16 bits */
2769  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2770  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2771  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2772  // (1) or may be deferred (0)
2773  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2774  // (0) [>= 2 threads]
2775  /* If either team_serial or tasking_ser is set, task team may be NULL */
2776  /* Task State Flags: */
2777  unsigned started : 1; /* 1==started, 0==not started */
2778  unsigned executing : 1; /* 1==executing, 0==not executing */
2779  unsigned complete : 1; /* 1==complete, 0==not complete */
2780  unsigned freed : 1; /* 1==freed, 0==allocated */
2781  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2782  unsigned target : 1;
2783 #if OMPX_TASKGRAPH
2784  unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2785  unsigned reserved31 : 5; /* reserved for library use */
2786 #else
2787  unsigned reserved31 : 6; /* reserved for library use */
2788 #endif
2789 #endif
2790 } kmp_tasking_flags_t;
2791 
2792 typedef struct kmp_target_data {
2793  void *async_handle; // libomptarget async handle for task completion query
2794 } kmp_target_data_t;
2795 
2796 struct kmp_taskdata { /* aligned during dynamic allocation */
2797  kmp_int32 td_task_id; /* id, assigned by debugger */
2798  kmp_tasking_flags_t td_flags; /* task flags */
2799  kmp_team_t *td_team; /* team for this task */
2800  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2801  /* Currently not used except for perhaps IDB */
2802  kmp_taskdata_t *td_parent; /* parent task */
2803  kmp_int32 td_level; /* task nesting level */
2804  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2805  ident_t *td_ident; /* task identifier */
2806  // Taskwait data.
2807  ident_t *td_taskwait_ident;
2808  kmp_uint32 td_taskwait_counter;
2809  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2810  KMP_ALIGN_CACHE kmp_internal_control_t
2811  td_icvs; /* Internal control variables for the task */
2812  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2813  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2814  deallocated */
2815  std::atomic<kmp_int32>
2816  td_incomplete_child_tasks; /* Child tasks not yet complete */
2817  kmp_taskgroup_t
2818  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2819  kmp_dephash_t
2820  *td_dephash; // Dependencies for children tasks are tracked from here
2821  kmp_depnode_t
2822  *td_depnode; // Pointer to graph node if this task has dependencies
2823  kmp_task_team_t *td_task_team;
2824  size_t td_size_alloc; // Size of task structure, including shareds etc.
2825 #if defined(KMP_GOMP_COMPAT)
2826  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2827  kmp_int32 td_size_loop_bounds;
2828 #endif
2829  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2830 #if defined(KMP_GOMP_COMPAT)
2831  // GOMP sends in a copy function for copy constructors
2832  void (*td_copy_func)(void *, void *);
2833 #endif
2834  kmp_event_t td_allow_completion_event;
2835 #if OMPT_SUPPORT
2836  ompt_task_info_t ompt_task_info;
2837 #endif
2838 #if OMPX_TASKGRAPH
2839  bool is_taskgraph = 0; // whether the task is within a TDG
2840  kmp_tdg_info_t *tdg; // used to associate task with a TDG
2841  kmp_int32 td_tdg_task_id; // local task id in its TDG
2842 #endif
2843  kmp_target_data_t td_target_data;
2844 }; // struct kmp_taskdata
2845 
2846 // Make sure padding above worked
2847 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2848 
2849 // Data for task team but per thread
2850 typedef struct kmp_base_thread_data {
2851  kmp_info_p *td_thr; // Pointer back to thread info
2852  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2853  // queued?
2854  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2855  kmp_taskdata_t *
2856  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2857  kmp_int32 td_deque_size; // Size of deck
2858  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2859  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2860  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2861  // GEH: shouldn't this be volatile since used in while-spin?
2862  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2863 #ifdef BUILD_TIED_TASK_STACK
2864  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2865 // scheduling constraint
2866 #endif // BUILD_TIED_TASK_STACK
2867 } kmp_base_thread_data_t;
2868 
2869 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2870 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2871 
2872 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2873 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2874 
2875 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2876  kmp_base_thread_data_t td;
2877  double td_align; /* use worst case alignment */
2878  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2879 } kmp_thread_data_t;
2880 
2881 typedef struct kmp_task_pri {
2882  kmp_thread_data_t td;
2883  kmp_int32 priority;
2884  kmp_task_pri *next;
2885 } kmp_task_pri_t;
2886 
2887 // Data for task teams which are used when tasking is enabled for the team
2888 typedef struct kmp_base_task_team {
2889  kmp_bootstrap_lock_t
2890  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2891  /* must be bootstrap lock since used at library shutdown*/
2892 
2893  // TODO: check performance vs kmp_tas_lock_t
2894  kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2895  kmp_task_pri_t *tt_task_pri_list;
2896 
2897  kmp_task_team_t *tt_next; /* For linking the task team free list */
2898  kmp_thread_data_t
2899  *tt_threads_data; /* Array of per-thread structures for task team */
2900  /* Data survives task team deallocation */
2901  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2902  executing this team? */
2903  /* TRUE means tt_threads_data is set up and initialized */
2904  kmp_int32 tt_nproc; /* #threads in team */
2905  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2906  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2907  kmp_int32 tt_untied_task_encountered;
2908  std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2909  // There is hidden helper thread encountered in this task team so that we must
2910  // wait when waiting on task team
2911  kmp_int32 tt_hidden_helper_task_encountered;
2912 
2913  KMP_ALIGN_CACHE
2914  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2915 
2916  KMP_ALIGN_CACHE
2917  volatile kmp_uint32
2918  tt_active; /* is the team still actively executing tasks */
2919 } kmp_base_task_team_t;
2920 
2921 union KMP_ALIGN_CACHE kmp_task_team {
2922  kmp_base_task_team_t tt;
2923  double tt_align; /* use worst case alignment */
2924  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2925 };
2926 
2927 typedef struct kmp_task_team_list_t {
2928  kmp_task_team_t *task_team;
2929  kmp_task_team_list_t *next;
2930 } kmp_task_team_list_t;
2931 
2932 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2933 // Free lists keep same-size free memory slots for fast memory allocation
2934 // routines
2935 typedef struct kmp_free_list {
2936  void *th_free_list_self; // Self-allocated tasks free list
2937  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2938  // threads
2939  void *th_free_list_other; // Non-self free list (to be returned to owner's
2940  // sync list)
2941 } kmp_free_list_t;
2942 #endif
2943 #if KMP_NESTED_HOT_TEAMS
2944 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2945 // are not put in teams pool, and they don't put threads in threads pool.
2946 typedef struct kmp_hot_team_ptr {
2947  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2948  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2949 } kmp_hot_team_ptr_t;
2950 #endif
2951 typedef struct kmp_teams_size {
2952  kmp_int32 nteams; // number of teams in a league
2953  kmp_int32 nth; // number of threads in each team of the league
2954 } kmp_teams_size_t;
2955 
2956 // This struct stores a thread that acts as a "root" for a contention
2957 // group. Contention groups are rooted at kmp_root threads, but also at
2958 // each primary thread of each team created in the teams construct.
2959 // This struct therefore also stores a thread_limit associated with
2960 // that contention group, and a counter to track the number of threads
2961 // active in that contention group. Each thread has a list of these: CG
2962 // root threads have an entry in their list in which cg_root refers to
2963 // the thread itself, whereas other workers in the CG will have a
2964 // single entry where cg_root is same as the entry containing their CG
2965 // root. When a thread encounters a teams construct, it will add a new
2966 // entry to the front of its list, because it now roots a new CG.
2967 typedef struct kmp_cg_root {
2968  kmp_info_p *cg_root; // "root" thread for a contention group
2969  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2970  // thread_limit clause for teams primary threads
2971  kmp_int32 cg_thread_limit;
2972  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2973  struct kmp_cg_root *up; // pointer to higher level CG root in list
2974 } kmp_cg_root_t;
2975 
2976 // OpenMP thread data structures
2977 
2978 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2979  /* Start with the readonly data which is cache aligned and padded. This is
2980  written before the thread starts working by the primary thread. Uber
2981  masters may update themselves later. Usage does not consider serialized
2982  regions. */
2983  kmp_desc_t th_info;
2984  kmp_team_p *th_team; /* team we belong to */
2985  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2986  kmp_info_p *th_next_pool; /* next available thread in the pool */
2987  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2988  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2989 
2990  /* The following are cached from the team info structure */
2991  /* TODO use these in more places as determined to be needed via profiling */
2992  int th_team_nproc; /* number of threads in a team */
2993  kmp_info_p *th_team_master; /* the team's primary thread */
2994  int th_team_serialized; /* team is serialized */
2995  microtask_t th_teams_microtask; /* save entry address for teams construct */
2996  int th_teams_level; /* save initial level of teams construct */
2997 /* it is 0 on device but may be any on host */
2998 
2999 /* The blocktime info is copied from the team struct to the thread struct */
3000 /* at the start of a barrier, and the values stored in the team are used */
3001 /* at points in the code where the team struct is no longer guaranteed */
3002 /* to exist (from the POV of worker threads). */
3003 #if KMP_USE_MONITOR
3004  int th_team_bt_intervals;
3005  int th_team_bt_set;
3006 #else
3007  kmp_uint64 th_team_bt_intervals;
3008 #endif
3009 
3010 #if KMP_AFFINITY_SUPPORTED
3011  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
3012  kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
3013  kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
3014 #endif
3015  omp_allocator_handle_t th_def_allocator; /* default allocator */
3016  /* The data set by the primary thread at reinit, then R/W by the worker */
3017  KMP_ALIGN_CACHE int
3018  th_set_nproc; /* if > 0, then only use this request for the next fork */
3019  int *th_set_nested_nth;
3020  bool th_nt_strict; // num_threads clause has strict modifier
3021  ident_t *th_nt_loc; // loc for strict modifier
3022  int th_nt_sev; // error severity for strict modifier
3023  const char *th_nt_msg; // error message for strict modifier
3024  int th_set_nested_nth_sz;
3025 #if KMP_NESTED_HOT_TEAMS
3026  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
3027 #endif
3028  kmp_proc_bind_t
3029  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
3030  kmp_teams_size_t
3031  th_teams_size; /* number of teams/threads in teams construct */
3032 #if KMP_AFFINITY_SUPPORTED
3033  int th_current_place; /* place currently bound to */
3034  int th_new_place; /* place to bind to in par reg */
3035  int th_first_place; /* first place in partition */
3036  int th_last_place; /* last place in partition */
3037 #endif
3038  int th_prev_level; /* previous level for affinity format */
3039  int th_prev_num_threads; /* previous num_threads for affinity format */
3040 #if USE_ITT_BUILD
3041  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
3042  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
3043  kmp_uint64 th_frame_time; /* frame timestamp */
3044 #endif /* USE_ITT_BUILD */
3045  kmp_local_t th_local;
3046  struct private_common *th_pri_head;
3047 
3048  /* Now the data only used by the worker (after initial allocation) */
3049  /* TODO the first serial team should actually be stored in the info_t
3050  structure. this will help reduce initial allocation overhead */
3051  KMP_ALIGN_CACHE kmp_team_p
3052  *th_serial_team; /*serialized team held in reserve*/
3053 
3054 #if OMPT_SUPPORT
3055  ompt_thread_info_t ompt_thread_info;
3056 #endif
3057 
3058  /* The following are also read by the primary thread during reinit */
3059  struct common_table *th_pri_common;
3060 
3061  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
3062  /* while awaiting queuing lock acquire */
3063 
3064  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
3065  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
3066 
3067  ident_t *th_ident;
3068  unsigned th_x; // Random number generator data
3069  unsigned th_a; // Random number generator data
3070 
3071  /* Tasking-related data for the thread */
3072  kmp_task_team_t *th_task_team; // Task team struct
3073  kmp_taskdata_t *th_current_task; // Innermost Task being executed
3074  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3075  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3076  // tasking, thus safe to reap
3077 
3078  /* More stuff for keeping track of active/sleeping threads (this part is
3079  written by the worker thread) */
3080  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3081  int th_active; // ! sleeping; 32 bits for TCR/TCW
3082  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3083  // 0 = not used in team; 1 = used in team;
3084  // 2 = transitioning to not used in team; 3 = transitioning to used in team
3085  struct cons_header *th_cons; // used for consistency check
3086 #if KMP_USE_HIER_SCHED
3087  // used for hierarchical scheduling
3088  kmp_hier_private_bdata_t *th_hier_bar_data;
3089 #endif
3090 
3091  /* Add the syncronizing data which is cache aligned and padded. */
3092  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3093 
3094  KMP_ALIGN_CACHE volatile kmp_int32
3095  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3096 
3097 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3098 #define NUM_LISTS 4
3099  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3100 // allocation routines
3101 #endif
3102 
3103 #if KMP_OS_WINDOWS
3104  kmp_win32_cond_t th_suspend_cv;
3105  kmp_win32_mutex_t th_suspend_mx;
3106  std::atomic<int> th_suspend_init;
3107 #endif
3108 #if KMP_OS_UNIX
3109  kmp_cond_align_t th_suspend_cv;
3110  kmp_mutex_align_t th_suspend_mx;
3111  std::atomic<int> th_suspend_init_count;
3112 #endif
3113 
3114 #if USE_ITT_BUILD
3115  kmp_itt_mark_t th_itt_mark_single;
3116 // alignment ???
3117 #endif /* USE_ITT_BUILD */
3118 #if KMP_STATS_ENABLED
3119  kmp_stats_list *th_stats;
3120 #endif
3121 #if KMP_OS_UNIX
3122  std::atomic<bool> th_blocking;
3123 #endif
3124  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3125 } kmp_base_info_t;
3126 
3127 typedef union KMP_ALIGN_CACHE kmp_info {
3128  double th_align; /* use worst case alignment */
3129  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3130  kmp_base_info_t th;
3131 } kmp_info_t;
3132 
3133 // OpenMP thread team data structures
3134 
3135 typedef struct kmp_base_data {
3136  volatile kmp_uint32 t_value;
3137 } kmp_base_data_t;
3138 
3139 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3140  double dt_align; /* use worst case alignment */
3141  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3142  kmp_base_data_t dt;
3143 } kmp_sleep_team_t;
3144 
3145 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3146  double dt_align; /* use worst case alignment */
3147  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3148  kmp_base_data_t dt;
3149 } kmp_ordered_team_t;
3150 
3151 typedef int (*launch_t)(int gtid);
3152 
3153 /* Minimum number of ARGV entries to malloc if necessary */
3154 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3155 
3156 // Set up how many argv pointers will fit in cache lines containing
3157 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3158 // larger value for more space between the primary write/worker read section and
3159 // read/write by all section seems to buy more performance on EPCC PARALLEL.
3160 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3161 #define KMP_INLINE_ARGV_BYTES \
3162  (4 * CACHE_LINE - \
3163  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3164  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3165  CACHE_LINE))
3166 #else
3167 #define KMP_INLINE_ARGV_BYTES \
3168  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3169 #endif
3170 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3171 
3172 typedef struct KMP_ALIGN_CACHE kmp_base_team {
3173  // Synchronization Data
3174  // ---------------------------------------------------------------------------
3175  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3176  kmp_balign_team_t t_bar[bs_last_barrier];
3177  std::atomic<int> t_construct; // count of single directive encountered by team
3178  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3179 
3180  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3181  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3182  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3183 
3184  // Primary thread only
3185  // ---------------------------------------------------------------------------
3186  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3187  int t_master_this_cons; // "this_construct" single counter of primary thread
3188  // in parent team
3189  ident_t *t_ident; // if volatile, have to change too much other crud to
3190  // volatile too
3191  kmp_team_p *t_parent; // parent team
3192  kmp_team_p *t_next_pool; // next free team in the team pool
3193  kmp_disp_t *t_dispatch; // thread's dispatch data
3194  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3195  kmp_proc_bind_t t_proc_bind; // bind type for par region
3196  int t_primary_task_state; // primary thread's task state saved
3197 #if USE_ITT_BUILD
3198  kmp_uint64 t_region_time; // region begin timestamp
3199 #endif /* USE_ITT_BUILD */
3200 
3201  // Primary thread write, workers read
3202  // --------------------------------------------------------------------------
3203  KMP_ALIGN_CACHE void **t_argv;
3204  int t_argc;
3205  int t_nproc; // number of threads in team
3206  microtask_t t_pkfn;
3207  launch_t t_invoke; // procedure to launch the microtask
3208 
3209 #if OMPT_SUPPORT
3210  ompt_team_info_t ompt_team_info;
3211  ompt_lw_taskteam_t *ompt_serialized_team_info;
3212 #endif
3213 
3214 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3215  kmp_int8 t_fp_control_saved;
3216  kmp_int8 t_pad2b;
3217  kmp_int16 t_x87_fpu_control_word; // FP control regs
3218  kmp_uint32 t_mxcsr;
3219 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3220 
3221  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3222 
3223  KMP_ALIGN_CACHE kmp_info_t **t_threads;
3224  kmp_taskdata_t
3225  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3226  int t_level; // nested parallel level
3227 
3228  KMP_ALIGN_CACHE int t_max_argc;
3229  int t_max_nproc; // max threads this team can handle (dynamically expandable)
3230  int t_serialized; // levels deep of serialized teams
3231  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3232  int t_id; // team's id, assigned by debugger.
3233  int t_active_level; // nested active parallel level
3234  kmp_r_sched_t t_sched; // run-time schedule for the team
3235 #if KMP_AFFINITY_SUPPORTED
3236  int t_first_place; // first & last place in parent thread's partition.
3237  int t_last_place; // Restore these values to primary thread after par region.
3238 #endif // KMP_AFFINITY_SUPPORTED
3239  int t_display_affinity;
3240  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3241  // omp_set_num_threads() call
3242  omp_allocator_handle_t t_def_allocator; /* default allocator */
3243 
3244 // Read/write by workers as well
3245 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3246  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3247  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3248  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3249  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3250  char dummy_padding[1024];
3251 #endif
3252  // Internal control stack for additional nested teams.
3253  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3254  // for SERIALIZED teams nested 2 or more levels deep
3255  // typed flag to store request state of cancellation
3256  std::atomic<kmp_int32> t_cancel_request;
3257  int t_master_active; // save on fork, restore on join
3258  void *t_copypriv_data; // team specific pointer to copyprivate data array
3259 #if KMP_OS_WINDOWS
3260  std::atomic<kmp_uint32> t_copyin_counter;
3261 #endif
3262 #if USE_ITT_BUILD
3263  void *t_stack_id; // team specific stack stitching id (for ittnotify)
3264 #endif /* USE_ITT_BUILD */
3265  distributedBarrier *b; // Distributed barrier data associated with team
3266  kmp_nested_nthreads_t *t_nested_nth;
3267 } kmp_base_team_t;
3268 
3269 // Assert that the list structure fits and aligns within
3270 // the double task team pointer
3271 KMP_BUILD_ASSERT(sizeof(kmp_task_team_t *[2]) == sizeof(kmp_task_team_list_t));
3272 KMP_BUILD_ASSERT(alignof(kmp_task_team_t *[2]) ==
3273  alignof(kmp_task_team_list_t));
3274 
3275 union KMP_ALIGN_CACHE kmp_team {
3276  kmp_base_team_t t;
3277  double t_align; /* use worst case alignment */
3278  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3279 };
3280 
3281 typedef union KMP_ALIGN_CACHE kmp_time_global {
3282  double dt_align; /* use worst case alignment */
3283  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3284  kmp_base_data_t dt;
3285 } kmp_time_global_t;
3286 
3287 typedef struct kmp_base_global {
3288  /* cache-aligned */
3289  kmp_time_global_t g_time;
3290 
3291  /* non cache-aligned */
3292  volatile int g_abort;
3293  volatile int g_done;
3294 
3295  int g_dynamic;
3296  enum dynamic_mode g_dynamic_mode;
3297 } kmp_base_global_t;
3298 
3299 typedef union KMP_ALIGN_CACHE kmp_global {
3300  kmp_base_global_t g;
3301  double g_align; /* use worst case alignment */
3302  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3303 } kmp_global_t;
3304 
3305 typedef struct kmp_base_root {
3306  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3307  // (r_in_parallel>= 0)
3308  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3309  // the synch overhead or keeping r_active
3310  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3311  // keeps a count of active parallel regions per root
3312  std::atomic<int> r_in_parallel;
3313  // GEH: This is misnamed, should be r_active_levels
3314  kmp_team_t *r_root_team;
3315  kmp_team_t *r_hot_team;
3316  kmp_info_t *r_uber_thread;
3317  kmp_lock_t r_begin_lock;
3318  volatile int r_begin;
3319  int r_blocktime; /* blocktime for this root and descendants */
3320 #if KMP_AFFINITY_SUPPORTED
3321  int r_affinity_assigned;
3322 #endif // KMP_AFFINITY_SUPPORTED
3323 } kmp_base_root_t;
3324 
3325 typedef union KMP_ALIGN_CACHE kmp_root {
3326  kmp_base_root_t r;
3327  double r_align; /* use worst case alignment */
3328  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3329 } kmp_root_t;
3330 
3331 struct fortran_inx_info {
3332  kmp_int32 data;
3333 };
3334 
3335 // This list type exists to hold old __kmp_threads arrays so that
3336 // old references to them may complete while reallocation takes place when
3337 // expanding the array. The items in this list are kept alive until library
3338 // shutdown.
3339 typedef struct kmp_old_threads_list_t {
3340  kmp_info_t **threads;
3341  struct kmp_old_threads_list_t *next;
3342 } kmp_old_threads_list_t;
3343 
3344 /* ------------------------------------------------------------------------ */
3345 
3346 extern int __kmp_settings;
3347 extern int __kmp_duplicate_library_ok;
3348 #if USE_ITT_BUILD
3349 extern int __kmp_forkjoin_frames;
3350 extern int __kmp_forkjoin_frames_mode;
3351 #endif
3352 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3353 extern int __kmp_determ_red;
3354 
3355 #ifdef KMP_DEBUG
3356 extern int kmp_a_debug;
3357 extern int kmp_b_debug;
3358 extern int kmp_c_debug;
3359 extern int kmp_d_debug;
3360 extern int kmp_e_debug;
3361 extern int kmp_f_debug;
3362 #endif /* KMP_DEBUG */
3363 
3364 /* For debug information logging using rotating buffer */
3365 #define KMP_DEBUG_BUF_LINES_INIT 512
3366 #define KMP_DEBUG_BUF_LINES_MIN 1
3367 
3368 #define KMP_DEBUG_BUF_CHARS_INIT 128
3369 #define KMP_DEBUG_BUF_CHARS_MIN 2
3370 
3371 extern int
3372  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3373 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3374 extern int
3375  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3376 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3377  entry pointer */
3378 
3379 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3380 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3381  printed in buffer so far */
3382 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3383  recommended in warnings */
3384 /* end rotating debug buffer */
3385 
3386 #ifdef KMP_DEBUG
3387 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3388 
3389 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3390 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3391 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3392 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3393 extern int __kmp_par_range_lb;
3394 extern int __kmp_par_range_ub;
3395 #endif
3396 
3397 /* For printing out dynamic storage map for threads and teams */
3398 extern int
3399  __kmp_storage_map; /* True means print storage map for threads and teams */
3400 extern int __kmp_storage_map_verbose; /* True means storage map includes
3401  placement info */
3402 extern int __kmp_storage_map_verbose_specified;
3403 
3404 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3405 extern kmp_cpuinfo_t __kmp_cpuinfo;
3406 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3407 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3408 static inline bool __kmp_is_hybrid_cpu() { return true; }
3409 #else
3410 static inline bool __kmp_is_hybrid_cpu() { return false; }
3411 #endif
3412 
3413 extern volatile int __kmp_init_serial;
3414 extern volatile int __kmp_init_gtid;
3415 extern volatile int __kmp_init_common;
3416 extern volatile int __kmp_need_register_serial;
3417 extern volatile int __kmp_init_middle;
3418 extern volatile int __kmp_init_parallel;
3419 #if KMP_USE_MONITOR
3420 extern volatile int __kmp_init_monitor;
3421 #endif
3422 extern volatile int __kmp_init_user_locks;
3423 extern volatile int __kmp_init_hidden_helper_threads;
3424 extern int __kmp_init_counter;
3425 extern int __kmp_root_counter;
3426 extern int __kmp_version;
3427 
3428 /* list of address of allocated caches for commons */
3429 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3430 
3431 /* Barrier algorithm types and options */
3432 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3433 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3434 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3435 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3436 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3437 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3438 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3439 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3440 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3441 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3442 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3443 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3444 
3445 /* Global Locks */
3446 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3447 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3448 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3449 extern kmp_bootstrap_lock_t
3450  __kmp_exit_lock; /* exit() is not always thread-safe */
3451 #if KMP_USE_MONITOR
3452 extern kmp_bootstrap_lock_t
3453  __kmp_monitor_lock; /* control monitor thread creation */
3454 #endif
3455 extern kmp_bootstrap_lock_t
3456  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3457  __kmp_threads expansion to co-exist */
3458 
3459 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3460 
3461 extern enum library_type __kmp_library;
3462 
3463 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3464 extern enum sched_type __kmp_static; /* default static scheduling method */
3465 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3466 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3467 extern int __kmp_chunk; /* default runtime chunk size */
3468 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3469 
3470 extern size_t __kmp_stksize; /* stack size per thread */
3471 #if KMP_USE_MONITOR
3472 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3473 #endif
3474 extern size_t __kmp_stkoffset; /* stack offset per thread */
3475 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3476 
3477 extern size_t
3478  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3479 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3480 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3481 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3482 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3483 extern int __kmp_generate_warnings; /* should we issue warnings? */
3484 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3485 
3486 #ifdef DEBUG_SUSPEND
3487 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3488 #endif
3489 
3490 extern kmp_int32 __kmp_use_yield;
3491 extern kmp_int32 __kmp_use_yield_exp_set;
3492 extern kmp_uint32 __kmp_yield_init;
3493 extern kmp_uint32 __kmp_yield_next;
3494 extern kmp_uint64 __kmp_pause_init;
3495 
3496 /* ------------------------------------------------------------------------- */
3497 extern int __kmp_allThreadsSpecified;
3498 
3499 extern size_t __kmp_align_alloc;
3500 /* following data protected by initialization routines */
3501 extern int __kmp_xproc; /* number of processors in the system */
3502 extern int __kmp_avail_proc; /* number of processors available to the process */
3503 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3504 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3505 // maximum total number of concurrently-existing threads on device
3506 extern int __kmp_max_nth;
3507 // maximum total number of concurrently-existing threads in a contention group
3508 extern int __kmp_cg_max_nth;
3509 extern int __kmp_task_max_nth; // max threads used in a task
3510 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3511 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3512  __kmp_root */
3513 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3514  region a la OMP_NUM_THREADS */
3515 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3516  initialization */
3517 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3518  used (fixed) */
3519 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3520  (__kmpc_threadprivate_cached()) */
3521 extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3522  blocking (env setting) */
3523 extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3524 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3525 
3526 // Convert raw blocktime from ms to us if needed.
3527 static inline void __kmp_aux_convert_blocktime(int *bt) {
3528  if (__kmp_blocktime_units == 'm') {
3529  if (*bt > INT_MAX / 1000) {
3530  *bt = INT_MAX / 1000;
3531  KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3532  }
3533  *bt = *bt * 1000;
3534  }
3535 }
3536 
3537 #if KMP_USE_MONITOR
3538 extern int
3539  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3540 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3541  blocking */
3542 #endif
3543 #ifdef KMP_ADJUST_BLOCKTIME
3544 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3545 #endif /* KMP_ADJUST_BLOCKTIME */
3546 #ifdef KMP_DFLT_NTH_CORES
3547 extern int __kmp_ncores; /* Total number of cores for threads placement */
3548 #endif
3549 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3550 extern int __kmp_abort_delay;
3551 
3552 extern int __kmp_need_register_atfork_specified;
3553 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3554  to install fork handler */
3555 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3556  0 - not set, will be set at runtime
3557  1 - using stack search
3558  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3559  X*) or TlsGetValue(Windows* OS))
3560  3 - static TLS (__declspec(thread) __kmp_gtid),
3561  Linux* OS .so only. */
3562 extern int
3563  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3564 #ifdef KMP_TDATA_GTID
3565 extern KMP_THREAD_LOCAL int __kmp_gtid;
3566 #endif
3567 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3568 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3569 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3570 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3571 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3572 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3573 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3574 
3575 // max_active_levels for nested parallelism enabled by default via
3576 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3577 extern int __kmp_dflt_max_active_levels;
3578 // Indicates whether value of __kmp_dflt_max_active_levels was already
3579 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3580 extern bool __kmp_dflt_max_active_levels_set;
3581 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3582  concurrent execution per team */
3583 #if KMP_NESTED_HOT_TEAMS
3584 extern int __kmp_hot_teams_mode;
3585 extern int __kmp_hot_teams_max_level;
3586 #endif
3587 
3588 #if KMP_MIC_SUPPORTED
3589 extern enum mic_type __kmp_mic_type;
3590 #endif
3591 
3592 #ifdef USE_LOAD_BALANCE
3593 extern double __kmp_load_balance_interval; // load balance algorithm interval
3594 #endif /* USE_LOAD_BALANCE */
3595 
3596 #if KMP_USE_ADAPTIVE_LOCKS
3597 
3598 // Parameters for the speculative lock backoff system.
3599 struct kmp_adaptive_backoff_params_t {
3600  // Number of soft retries before it counts as a hard retry.
3601  kmp_uint32 max_soft_retries;
3602  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3603  // the right
3604  kmp_uint32 max_badness;
3605 };
3606 
3607 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3608 
3609 #if KMP_DEBUG_ADAPTIVE_LOCKS
3610 extern const char *__kmp_speculative_statsfile;
3611 #endif
3612 
3613 #endif // KMP_USE_ADAPTIVE_LOCKS
3614 
3615 extern int __kmp_display_env; /* TRUE or FALSE */
3616 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3617 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3618 extern int __kmp_nteams;
3619 extern int __kmp_teams_thread_limit;
3620 
3621 /* ------------------------------------------------------------------------- */
3622 
3623 /* the following are protected by the fork/join lock */
3624 /* write: lock read: anytime */
3625 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3626 /* Holds old arrays of __kmp_threads until library shutdown */
3627 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3628 /* read/write: lock */
3629 extern volatile kmp_team_t *__kmp_team_pool;
3630 extern volatile kmp_info_t *__kmp_thread_pool;
3631 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3632 
3633 // total num threads reachable from some root thread including all root threads
3634 extern volatile int __kmp_nth;
3635 /* total number of threads reachable from some root thread including all root
3636  threads, and those in the thread pool */
3637 extern volatile int __kmp_all_nth;
3638 extern std::atomic<int> __kmp_thread_pool_active_nth;
3639 
3640 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3641 /* end data protected by fork/join lock */
3642 /* ------------------------------------------------------------------------- */
3643 
3644 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3645 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3646 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3647 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3648 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3649 
3650 // AT: Which way is correct?
3651 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3652 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3653 #define __kmp_get_team_num_threads(gtid) \
3654  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3655 
3656 static inline bool KMP_UBER_GTID(int gtid) {
3657  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3658  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3659  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3660  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3661 }
3662 
3663 static inline int __kmp_tid_from_gtid(int gtid) {
3664  KMP_DEBUG_ASSERT(gtid >= 0);
3665  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3666 }
3667 
3668 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3669  KMP_DEBUG_ASSERT(tid >= 0 && team);
3670  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3671 }
3672 
3673 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3674  KMP_DEBUG_ASSERT(thr);
3675  return thr->th.th_info.ds.ds_gtid;
3676 }
3677 
3678 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3679  KMP_DEBUG_ASSERT(gtid >= 0);
3680  return __kmp_threads[gtid];
3681 }
3682 
3683 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3684  KMP_DEBUG_ASSERT(gtid >= 0);
3685  return __kmp_threads[gtid]->th.th_team;
3686 }
3687 
3688 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3689  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3690  KMP_FATAL(ThreadIdentInvalid);
3691 }
3692 
3693 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3694 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3695 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3696 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3697 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3698 #endif
3699 
3700 #if KMP_HAVE_UMWAIT
3701 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3702 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3703 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3704 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3705 #endif
3706 
3707 /* ------------------------------------------------------------------------- */
3708 
3709 extern kmp_global_t __kmp_global; /* global status */
3710 
3711 extern kmp_info_t __kmp_monitor;
3712 // For Debugging Support Library
3713 extern std::atomic<kmp_int32> __kmp_team_counter;
3714 // For Debugging Support Library
3715 extern std::atomic<kmp_int32> __kmp_task_counter;
3716 
3717 #if USE_DEBUGGER
3718 #define _KMP_GEN_ID(counter) \
3719  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3720 #else
3721 #define _KMP_GEN_ID(counter) (~0)
3722 #endif /* USE_DEBUGGER */
3723 
3724 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3725 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3726 
3727 /* ------------------------------------------------------------------------ */
3728 
3729 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3730  size_t size, char const *format, ...);
3731 
3732 extern void __kmp_serial_initialize(void);
3733 extern void __kmp_middle_initialize(void);
3734 extern void __kmp_parallel_initialize(void);
3735 
3736 extern void __kmp_internal_begin(void);
3737 extern void __kmp_internal_end_library(int gtid);
3738 extern void __kmp_internal_end_thread(int gtid);
3739 extern void __kmp_internal_end_atexit(void);
3740 extern void __kmp_internal_end_dtor(void);
3741 extern void __kmp_internal_end_dest(void *);
3742 
3743 extern int __kmp_register_root(int initial_thread);
3744 extern void __kmp_unregister_root(int gtid);
3745 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3746 
3747 extern int __kmp_ignore_mppbeg(void);
3748 extern int __kmp_ignore_mppend(void);
3749 
3750 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3751 extern void __kmp_exit_single(int gtid);
3752 
3753 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3754 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3755 
3756 #ifdef USE_LOAD_BALANCE
3757 extern int __kmp_get_load_balance(int);
3758 #endif
3759 
3760 extern int __kmp_get_global_thread_id(void);
3761 extern int __kmp_get_global_thread_id_reg(void);
3762 extern void __kmp_exit_thread(int exit_status);
3763 extern void __kmp_abort(char const *format, ...);
3764 extern void __kmp_abort_thread(void);
3765 KMP_NORETURN extern void __kmp_abort_process(void);
3766 extern void __kmp_warn(char const *format, ...);
3767 
3768 extern void __kmp_set_num_threads(int new_nth, int gtid);
3769 
3770 extern bool __kmp_detect_shm();
3771 extern bool __kmp_detect_tmp();
3772 
3773 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3774 // registered.
3775 static inline kmp_info_t *__kmp_entry_thread() {
3776  int gtid = __kmp_entry_gtid();
3777 
3778  return __kmp_threads[gtid];
3779 }
3780 
3781 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3782 extern int __kmp_get_max_active_levels(int gtid);
3783 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3784 extern int __kmp_get_team_size(int gtid, int level);
3785 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3786 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3787 
3788 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3789 extern void __kmp_init_random(kmp_info_t *thread);
3790 
3791 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3792 extern void __kmp_adjust_num_threads(int new_nproc);
3793 extern void __kmp_check_stksize(size_t *val);
3794 
3795 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3796 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3797 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3798 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3799 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3800 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3801 
3802 #if USE_FAST_MEMORY
3803 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3804  size_t size KMP_SRC_LOC_DECL);
3805 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3806 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3807 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3808 #define __kmp_fast_allocate(this_thr, size) \
3809  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3810 #define __kmp_fast_free(this_thr, ptr) \
3811  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3812 #endif
3813 
3814 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3815 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3816  size_t elsize KMP_SRC_LOC_DECL);
3817 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3818  size_t size KMP_SRC_LOC_DECL);
3819 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3820 #define __kmp_thread_malloc(th, size) \
3821  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3822 #define __kmp_thread_calloc(th, nelem, elsize) \
3823  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3824 #define __kmp_thread_realloc(th, ptr, size) \
3825  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3826 #define __kmp_thread_free(th, ptr) \
3827  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3828 
3829 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3830 extern void __kmp_push_num_threads_list(ident_t *loc, int gtid,
3831  kmp_uint32 list_length,
3832  int *num_threads_list);
3833 extern void __kmp_set_strict_num_threads(ident_t *loc, int gtid, int sev,
3834  const char *msg);
3835 
3836 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3837  kmp_proc_bind_t proc_bind);
3838 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3839  int num_threads);
3840 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3841  int num_teams_ub, int num_threads);
3842 
3843 extern void __kmp_yield();
3844 
3845 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3846  enum sched_type schedule, kmp_int32 lb,
3847  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3848 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3849  enum sched_type schedule, kmp_uint32 lb,
3850  kmp_uint32 ub, kmp_int32 st,
3851  kmp_int32 chunk);
3852 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3853  enum sched_type schedule, kmp_int64 lb,
3854  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3855 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3856  enum sched_type schedule, kmp_uint64 lb,
3857  kmp_uint64 ub, kmp_int64 st,
3858  kmp_int64 chunk);
3859 
3860 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3861  kmp_int32 *p_last, kmp_int32 *p_lb,
3862  kmp_int32 *p_ub, kmp_int32 *p_st);
3863 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3864  kmp_int32 *p_last, kmp_uint32 *p_lb,
3865  kmp_uint32 *p_ub, kmp_int32 *p_st);
3866 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3867  kmp_int32 *p_last, kmp_int64 *p_lb,
3868  kmp_int64 *p_ub, kmp_int64 *p_st);
3869 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3870  kmp_int32 *p_last, kmp_uint64 *p_lb,
3871  kmp_uint64 *p_ub, kmp_int64 *p_st);
3872 
3873 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3874 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3875 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3876 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3877 
3878 extern void __kmpc_dispatch_deinit(ident_t *loc, kmp_int32 gtid);
3879 
3880 #ifdef KMP_GOMP_COMPAT
3881 
3882 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3883  enum sched_type schedule, kmp_int32 lb,
3884  kmp_int32 ub, kmp_int32 st,
3885  kmp_int32 chunk, int push_ws);
3886 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3887  enum sched_type schedule, kmp_uint32 lb,
3888  kmp_uint32 ub, kmp_int32 st,
3889  kmp_int32 chunk, int push_ws);
3890 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3891  enum sched_type schedule, kmp_int64 lb,
3892  kmp_int64 ub, kmp_int64 st,
3893  kmp_int64 chunk, int push_ws);
3894 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3895  enum sched_type schedule, kmp_uint64 lb,
3896  kmp_uint64 ub, kmp_int64 st,
3897  kmp_int64 chunk, int push_ws);
3898 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3899 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3900 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3901 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3902 
3903 #endif /* KMP_GOMP_COMPAT */
3904 
3905 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3906 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3907 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3908 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3909 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3910 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3911  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3912  void *obj);
3913 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3914  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3915 
3916 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3917  int final_spin
3918 #if USE_ITT_BUILD
3919  ,
3920  void *itt_sync_obj
3921 #endif
3922 );
3923 extern void __kmp_release_64(kmp_flag_64<> *flag);
3924 
3925 extern void __kmp_infinite_loop(void);
3926 
3927 extern void __kmp_cleanup(void);
3928 
3929 #if KMP_HANDLE_SIGNALS
3930 extern int __kmp_handle_signals;
3931 extern void __kmp_install_signals(int parallel_init);
3932 extern void __kmp_remove_signals(void);
3933 #endif
3934 
3935 extern void __kmp_clear_system_time(void);
3936 extern void __kmp_read_system_time(double *delta);
3937 
3938 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3939 
3940 extern void __kmp_expand_host_name(char *buffer, size_t size);
3941 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3942 
3943 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3944 extern void
3945 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3946 #endif
3947 
3948 extern void
3949 __kmp_runtime_initialize(void); /* machine specific initialization */
3950 extern void __kmp_runtime_destroy(void);
3951 
3952 #if KMP_AFFINITY_SUPPORTED
3953 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3954  kmp_affin_mask_t *mask);
3955 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3956  kmp_affin_mask_t *mask);
3957 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3958 extern void __kmp_affinity_uninitialize(void);
3959 extern void __kmp_affinity_set_init_mask(
3960  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3961 void __kmp_affinity_bind_init_mask(int gtid);
3962 extern void __kmp_affinity_bind_place(int gtid);
3963 extern void __kmp_affinity_determine_capable(const char *env_var);
3964 extern int __kmp_aux_set_affinity(void **mask);
3965 extern int __kmp_aux_get_affinity(void **mask);
3966 extern int __kmp_aux_get_affinity_max_proc();
3967 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3968 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3969 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3970 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3971 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3972 extern int __kmp_get_first_osid_with_ecore(void);
3973 #endif
3974 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \
3975  KMP_OS_AIX
3976 extern int kmp_set_thread_affinity_mask_initial(void);
3977 #endif
3978 static inline void __kmp_assign_root_init_mask() {
3979  int gtid = __kmp_entry_gtid();
3980  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3981  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3982  __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3983  __kmp_affinity_bind_init_mask(gtid);
3984  r->r.r_affinity_assigned = TRUE;
3985  }
3986 }
3987 static inline void __kmp_reset_root_init_mask(int gtid) {
3988  if (!KMP_AFFINITY_CAPABLE())
3989  return;
3990  kmp_info_t *th = __kmp_threads[gtid];
3991  kmp_root_t *r = th->th.th_root;
3992  if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3993  __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3994  KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3995  r->r.r_affinity_assigned = FALSE;
3996  }
3997 }
3998 #else /* KMP_AFFINITY_SUPPORTED */
3999 #define __kmp_assign_root_init_mask() /* Nothing */
4000 static inline void __kmp_reset_root_init_mask(int gtid) {}
4001 #endif /* KMP_AFFINITY_SUPPORTED */
4002 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
4003 // format string is for affinity, so platforms that do not support
4004 // affinity can still use the other fields, e.g., %n for num_threads
4005 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
4006  kmp_str_buf_t *buffer);
4007 extern void __kmp_aux_display_affinity(int gtid, const char *format);
4008 
4009 extern void __kmp_cleanup_hierarchy();
4010 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
4011 
4012 #if KMP_USE_FUTEX
4013 
4014 extern int __kmp_futex_determine_capable(void);
4015 
4016 #endif // KMP_USE_FUTEX
4017 
4018 extern void __kmp_gtid_set_specific(int gtid);
4019 extern int __kmp_gtid_get_specific(void);
4020 
4021 extern double __kmp_read_cpu_time(void);
4022 
4023 extern int __kmp_read_system_info(struct kmp_sys_info *info);
4024 
4025 #if KMP_USE_MONITOR
4026 extern void __kmp_create_monitor(kmp_info_t *th);
4027 #endif
4028 
4029 extern void *__kmp_launch_thread(kmp_info_t *thr);
4030 
4031 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
4032 
4033 #if KMP_OS_WINDOWS
4034 extern int __kmp_still_running(kmp_info_t *th);
4035 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
4036 extern void __kmp_free_handle(kmp_thread_t tHandle);
4037 #endif
4038 
4039 #if KMP_USE_MONITOR
4040 extern void __kmp_reap_monitor(kmp_info_t *th);
4041 #endif
4042 extern void __kmp_reap_worker(kmp_info_t *th);
4043 extern void __kmp_terminate_thread(int gtid);
4044 
4045 extern int __kmp_try_suspend_mx(kmp_info_t *th);
4046 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
4047 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
4048 
4049 extern void __kmp_elapsed(double *);
4050 extern void __kmp_elapsed_tick(double *);
4051 
4052 extern void __kmp_enable(int old_state);
4053 extern void __kmp_disable(int *old_state);
4054 
4055 extern void __kmp_thread_sleep(int millis);
4056 
4057 extern void __kmp_common_initialize(void);
4058 extern void __kmp_common_destroy(void);
4059 extern void __kmp_common_destroy_gtid(int gtid);
4060 
4061 #if KMP_OS_UNIX
4062 extern void __kmp_register_atfork(void);
4063 #endif
4064 extern void __kmp_suspend_initialize(void);
4065 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4066 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4067 
4068 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4069  int tid);
4070 extern kmp_team_t *
4071 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4072 #if OMPT_SUPPORT
4073  ompt_data_t ompt_parallel_data,
4074 #endif
4075  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4076  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4077 extern void __kmp_free_thread(kmp_info_t *);
4078 extern void __kmp_free_team(kmp_root_t *,
4079  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4080 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4081 
4082 /* ------------------------------------------------------------------------ */
4083 
4084 extern void __kmp_initialize_bget(kmp_info_t *th);
4085 extern void __kmp_finalize_bget(kmp_info_t *th);
4086 
4087 KMP_EXPORT void *kmpc_malloc(size_t size);
4088 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4089 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4090 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4091 KMP_EXPORT void kmpc_free(void *ptr);
4092 
4093 /* declarations for internal use */
4094 
4095 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4096  size_t reduce_size, void *reduce_data,
4097  void (*reduce)(void *, void *));
4098 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4099 extern int __kmp_barrier_gomp_cancel(int gtid);
4100 
4105 enum fork_context_e {
4106  fork_context_gnu,
4108  fork_context_intel,
4109  fork_context_last
4110 };
4111 extern int __kmp_fork_call(ident_t *loc, int gtid,
4112  enum fork_context_e fork_context, kmp_int32 argc,
4113  microtask_t microtask, launch_t invoker,
4114  kmp_va_list ap);
4115 
4116 extern void __kmp_join_call(ident_t *loc, int gtid
4117 #if OMPT_SUPPORT
4118  ,
4119  enum fork_context_e fork_context
4120 #endif
4121  ,
4122  int exit_teams = 0);
4123 
4124 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4125 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4126 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4127 extern int __kmp_invoke_task_func(int gtid);
4128 extern void __kmp_run_before_invoked_task(int gtid, int tid,
4129  kmp_info_t *this_thr,
4130  kmp_team_t *team);
4131 extern void __kmp_run_after_invoked_task(int gtid, int tid,
4132  kmp_info_t *this_thr,
4133  kmp_team_t *team);
4134 
4135 // should never have been exported
4136 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4137 extern int __kmp_invoke_teams_master(int gtid);
4138 extern void __kmp_teams_master(int gtid);
4139 extern int __kmp_aux_get_team_num();
4140 extern int __kmp_aux_get_num_teams();
4141 extern void __kmp_save_internal_controls(kmp_info_t *thread);
4142 extern void __kmp_user_set_library(enum library_type arg);
4143 extern void __kmp_aux_set_library(enum library_type arg);
4144 extern void __kmp_aux_set_stacksize(size_t arg);
4145 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4146 extern void __kmp_aux_set_defaults(char const *str, size_t len);
4147 
4148 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4149 void kmpc_set_blocktime(int arg);
4150 void ompc_set_nested(int flag);
4151 void ompc_set_dynamic(int flag);
4152 void ompc_set_num_threads(int arg);
4153 
4154 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4155  kmp_team_t *team, int tid);
4156 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4157 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4158  kmp_tasking_flags_t *flags,
4159  size_t sizeof_kmp_task_t,
4160  size_t sizeof_shareds,
4161  kmp_routine_entry_t task_entry);
4162 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4163  kmp_team_t *team, int tid,
4164  int set_curr_task);
4165 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4166 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4167 
4168 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4169  int gtid,
4170  kmp_task_t *task);
4171 extern void __kmp_fulfill_event(kmp_event_t *event);
4172 
4173 extern void __kmp_free_task_team(kmp_info_t *thread,
4174  kmp_task_team_t *task_team);
4175 extern void __kmp_reap_task_teams(void);
4176 extern void __kmp_push_task_team_node(kmp_info_t *thread, kmp_team_t *team);
4177 extern void __kmp_pop_task_team_node(kmp_info_t *thread, kmp_team_t *team);
4178 extern void __kmp_wait_to_unref_task_teams(void);
4179 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team);
4180 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4181 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4182 #if USE_ITT_BUILD
4183  ,
4184  void *itt_sync_obj
4185 #endif /* USE_ITT_BUILD */
4186  ,
4187  int wait = 1);
4188 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4189  int gtid);
4190 #if KMP_DEBUG
4191 #define KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team, thr) \
4192  KMP_DEBUG_ASSERT( \
4193  __kmp_tasking_mode != tskm_task_teams || team->t.t_nproc == 1 || \
4194  thr->th.th_task_team == team->t.t_task_team[thr->th.th_task_state])
4195 #else
4196 #define KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team, thr) /* Nothing */
4197 #endif
4198 
4199 extern int __kmp_is_address_mapped(void *addr);
4200 extern kmp_uint64 __kmp_hardware_timestamp(void);
4201 
4202 #if KMP_OS_UNIX
4203 extern int __kmp_read_from_file(char const *path, char const *format, ...);
4204 #endif
4205 
4206 /* ------------------------------------------------------------------------ */
4207 //
4208 // Assembly routines that have no compiler intrinsic replacement
4209 //
4210 
4211 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4212  void *argv[]
4213 #if OMPT_SUPPORT
4214  ,
4215  void **exit_frame_ptr
4216 #endif
4217 );
4218 
4219 /* ------------------------------------------------------------------------ */
4220 
4221 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4222 KMP_EXPORT void __kmpc_end(ident_t *);
4223 
4224 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4225  kmpc_ctor_vec ctor,
4226  kmpc_cctor_vec cctor,
4227  kmpc_dtor_vec dtor,
4228  size_t vector_length);
4229 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4230  kmpc_ctor ctor, kmpc_cctor cctor,
4231  kmpc_dtor dtor);
4232 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4233  void *data, size_t size);
4234 
4235 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4236 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4237 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4238 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4239 
4240 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4241 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4242  kmpc_micro microtask, ...);
4243 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4244  kmpc_micro microtask, kmp_int32 cond,
4245  void *args);
4246 
4247 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4248 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4249 
4250 KMP_EXPORT void __kmpc_flush(ident_t *);
4251 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4252 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4253 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4254 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4255  kmp_int32 filter);
4256 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4257 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4258 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4259 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4260  kmp_critical_name *);
4261 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4262  kmp_critical_name *);
4263 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4264  kmp_critical_name *, uint32_t hint);
4265 
4266 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4267 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4268 
4269 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4270  kmp_int32 global_tid);
4271 
4272 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4273 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4274 
4275 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4276 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4277  kmp_int32 numberOfSections);
4278 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4279 
4280 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4281  kmp_int32 schedtype, kmp_int32 *plastiter,
4282  kmp_int *plower, kmp_int *pupper,
4283  kmp_int *pstride, kmp_int incr,
4284  kmp_int chunk);
4285 
4286 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4287 
4288 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4289  size_t cpy_size, void *cpy_data,
4290  void (*cpy_func)(void *, void *),
4291  kmp_int32 didit);
4292 
4293 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4294  void *cpy_data);
4295 
4296 extern void KMPC_SET_NUM_THREADS(int arg);
4297 extern void KMPC_SET_DYNAMIC(int flag);
4298 extern void KMPC_SET_NESTED(int flag);
4299 
4300 /* OMP 3.0 tasking interface routines */
4301 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4302  kmp_task_t *new_task);
4303 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4304  kmp_int32 flags,
4305  size_t sizeof_kmp_task_t,
4306  size_t sizeof_shareds,
4307  kmp_routine_entry_t task_entry);
4308 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4309  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4310  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4311 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4312  kmp_task_t *task);
4313 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4314  kmp_task_t *task);
4315 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4316  kmp_task_t *new_task);
4317 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4318 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4319  int end_part);
4320 
4321 #if TASK_UNUSED
4322 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4323 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4324  kmp_task_t *task);
4325 #endif // TASK_UNUSED
4326 
4327 /* ------------------------------------------------------------------------ */
4328 
4329 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4330 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4331 
4332 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4333  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4334  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4335  kmp_depend_info_t *noalias_dep_list);
4336 
4337 KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4338 
4339 KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4340 
4341 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4342  kmp_int32 ndeps,
4343  kmp_depend_info_t *dep_list,
4344  kmp_int32 ndeps_noalias,
4345  kmp_depend_info_t *noalias_dep_list);
4346 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4347  * Placeholder for taskwait with nowait clause.*/
4348 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4349  kmp_int32 ndeps,
4350  kmp_depend_info_t *dep_list,
4351  kmp_int32 ndeps_noalias,
4352  kmp_depend_info_t *noalias_dep_list,
4353  kmp_int32 has_no_wait);
4354 
4355 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4356  bool serialize_immediate);
4357 
4358 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4359  kmp_int32 cncl_kind);
4360 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4361  kmp_int32 cncl_kind);
4362 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4363 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4364 
4365 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4366 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4367 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4368  kmp_int32 if_val, kmp_uint64 *lb,
4369  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4370  kmp_int32 sched, kmp_uint64 grainsize,
4371  void *task_dup);
4372 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4373  kmp_task_t *task, kmp_int32 if_val,
4374  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4375  kmp_int32 nogroup, kmp_int32 sched,
4376  kmp_uint64 grainsize, kmp_int32 modifier,
4377  void *task_dup);
4378 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4379 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4380 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4381 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4382  int is_ws, int num,
4383  void *data);
4384 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4385  int num, void *data);
4386 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4387  int is_ws);
4388 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4389  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4390  kmp_task_affinity_info_t *affin_list);
4391 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4392 KMP_EXPORT int __kmp_get_max_teams(void);
4393 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4394 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4395 
4396 /* Interface target task integration */
4397 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4398 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4399 
4400 /* Lock interface routines (fast versions with gtid passed in) */
4401 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4402  void **user_lock);
4403 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4404  void **user_lock);
4405 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4406  void **user_lock);
4407 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4408  void **user_lock);
4409 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4410 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4411  void **user_lock);
4412 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4413  void **user_lock);
4414 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4415  void **user_lock);
4416 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4417 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4418  void **user_lock);
4419 
4420 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4421  void **user_lock, uintptr_t hint);
4422 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4423  void **user_lock,
4424  uintptr_t hint);
4425 
4426 #if OMPX_TASKGRAPH
4427 // Taskgraph's Record & Replay mechanism
4428 // __kmp_tdg_is_recording: check whether a given TDG is recording
4429 // status: the tdg's current status
4430 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4431  return status == KMP_TDG_RECORDING;
4432 }
4433 
4434 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4435  kmp_int32 input_flags,
4436  kmp_int32 tdg_id);
4437 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4438  kmp_int32 input_flags, kmp_int32 tdg_id);
4439 #endif
4440 /* Interface to fast scalable reduce methods routines */
4441 
4442 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4443  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4444  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4445  kmp_critical_name *lck);
4446 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4447  kmp_critical_name *lck);
4448 KMP_EXPORT kmp_int32 __kmpc_reduce(
4449  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4450  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4451  kmp_critical_name *lck);
4452 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4453  kmp_critical_name *lck);
4454 
4455 /* Internal fast reduction routines */
4456 
4457 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4458  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4459  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4460  kmp_critical_name *lck);
4461 
4462 // this function is for testing set/get/determine reduce method
4463 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4464 
4465 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4466 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4467 
4468 // C++ port
4469 // missing 'extern "C"' declarations
4470 
4471 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4472 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4473 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4474  kmp_int32 num_threads);
4475 KMP_EXPORT void __kmpc_push_num_threads_strict(ident_t *loc,
4476  kmp_int32 global_tid,
4477  kmp_int32 num_threads,
4478  int severity,
4479  const char *message);
4480 
4481 KMP_EXPORT void __kmpc_push_num_threads_list(ident_t *loc, kmp_int32 global_tid,
4482  kmp_uint32 list_length,
4483  kmp_int32 *num_threads_list);
4484 KMP_EXPORT void __kmpc_push_num_threads_list_strict(
4485  ident_t *loc, kmp_int32 global_tid, kmp_uint32 list_length,
4486  kmp_int32 *num_threads_list, int severity, const char *message);
4487 
4488 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4489  int proc_bind);
4490 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4491  kmp_int32 num_teams,
4492  kmp_int32 num_threads);
4493 KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4494  kmp_int32 thread_limit);
4495 /* Function for OpenMP 5.1 num_teams clause */
4496 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4497  kmp_int32 num_teams_lb,
4498  kmp_int32 num_teams_ub,
4499  kmp_int32 num_threads);
4500 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4501  kmpc_micro microtask, ...);
4502 struct kmp_dim { // loop bounds info casted to kmp_int64
4503  kmp_int64 lo; // lower
4504  kmp_int64 up; // upper
4505  kmp_int64 st; // stride
4506 };
4507 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4508  kmp_int32 num_dims,
4509  const struct kmp_dim *dims);
4510 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4511  const kmp_int64 *vec);
4512 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4513  const kmp_int64 *vec);
4514 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4515 
4516 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4517  void *data, size_t size,
4518  void ***cache);
4519 
4520 // The routines below are not exported.
4521 // Consider making them 'static' in corresponding source files.
4522 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4523  void *data_addr, size_t pc_size);
4524 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4525  void *data_addr,
4526  size_t pc_size);
4527 void __kmp_threadprivate_resize_cache(int newCapacity);
4528 void __kmp_cleanup_threadprivate_caches();
4529 
4530 // ompc_, kmpc_ entries moved from omp.h.
4531 #if KMP_OS_WINDOWS
4532 #define KMPC_CONVENTION __cdecl
4533 #else
4534 #define KMPC_CONVENTION
4535 #endif
4536 
4537 #ifndef __OMP_H
4538 typedef enum omp_sched_t {
4539  omp_sched_static = 1,
4540  omp_sched_dynamic = 2,
4541  omp_sched_guided = 3,
4542  omp_sched_auto = 4
4543 } omp_sched_t;
4544 typedef void *kmp_affinity_mask_t;
4545 #endif
4546 
4547 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4548 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4549 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4550 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4551 KMP_EXPORT int KMPC_CONVENTION
4552 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4553 KMP_EXPORT int KMPC_CONVENTION
4554 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4555 KMP_EXPORT int KMPC_CONVENTION
4556 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4557 
4558 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4559 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4560 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4561 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4562 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4563 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4564 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4565 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4566 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4567  char const *format);
4568 
4569 enum kmp_target_offload_kind {
4570  tgt_disabled = 0,
4571  tgt_default = 1,
4572  tgt_mandatory = 2
4573 };
4574 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4575 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4576 extern kmp_target_offload_kind_t __kmp_target_offload;
4577 extern int __kmpc_get_target_offload();
4578 
4579 // Constants used in libomptarget
4580 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4581 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4582 
4583 // OMP Pause Resource
4584 
4585 // The following enum is used both to set the status in __kmp_pause_status, and
4586 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4587 typedef enum kmp_pause_status_t {
4588  kmp_not_paused = 0, // status is not paused, or, requesting resume
4589  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4590  kmp_hard_paused = 2, // status is hard-paused, or, requesting hard pause
4591  kmp_stop_tool_paused = 3 // requesting stop_tool pause
4592 } kmp_pause_status_t;
4593 
4594 // This stores the pause state of the runtime
4595 extern kmp_pause_status_t __kmp_pause_status;
4596 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4597 extern int __kmp_pause_resource(kmp_pause_status_t level);
4598 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4599 extern void __kmp_resume_if_soft_paused();
4600 // Hard resume simply resets the status to not paused. Library will appear to
4601 // be uninitialized after hard pause. Let OMP constructs trigger required
4602 // initializations.
4603 static inline void __kmp_resume_if_hard_paused() {
4604  if (__kmp_pause_status == kmp_hard_paused) {
4605  __kmp_pause_status = kmp_not_paused;
4606  }
4607 }
4608 
4609 extern void __kmp_omp_display_env(int verbose);
4610 
4611 // 1: it is initializing hidden helper team
4612 extern volatile int __kmp_init_hidden_helper;
4613 // 1: the hidden helper team is done
4614 extern volatile int __kmp_hidden_helper_team_done;
4615 // 1: enable hidden helper task
4616 extern kmp_int32 __kmp_enable_hidden_helper;
4617 // Main thread of hidden helper team
4618 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4619 // Descriptors for the hidden helper threads
4620 extern kmp_info_t **__kmp_hidden_helper_threads;
4621 // Number of hidden helper threads
4622 extern kmp_int32 __kmp_hidden_helper_threads_num;
4623 // Number of hidden helper tasks that have not been executed yet
4624 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4625 
4626 extern void __kmp_hidden_helper_initialize();
4627 extern void __kmp_hidden_helper_threads_initz_routine();
4628 extern void __kmp_do_initialize_hidden_helper_threads();
4629 extern void __kmp_hidden_helper_threads_initz_wait();
4630 extern void __kmp_hidden_helper_initz_release();
4631 extern void __kmp_hidden_helper_threads_deinitz_wait();
4632 extern void __kmp_hidden_helper_threads_deinitz_release();
4633 extern void __kmp_hidden_helper_main_thread_wait();
4634 extern void __kmp_hidden_helper_worker_thread_wait();
4635 extern void __kmp_hidden_helper_worker_thread_signal();
4636 extern void __kmp_hidden_helper_main_thread_release();
4637 
4638 // Check whether a given thread is a hidden helper thread
4639 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4640  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4641 
4642 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4643  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4644 
4645 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4646  ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4647 
4648 #define KMP_HIDDEN_HELPER_TEAM(team) \
4649  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4650 
4651 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4652 // main thread, is skipped.
4653 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4654  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4655 
4656 // Return the adjusted gtid value by subtracting from gtid the number
4657 // of hidden helper threads. This adjusted value is the gtid the thread would
4658 // have received if there were no hidden helper threads.
4659 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4660  int adjusted_gtid = gtid;
4661  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4662  gtid - __kmp_hidden_helper_threads_num >= 0) {
4663  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4664  }
4665  return adjusted_gtid;
4666 }
4667 
4668 // Support for error directive
4669 typedef enum kmp_severity_t {
4670  severity_warning = 1,
4671  severity_fatal = 2
4672 } kmp_severity_t;
4673 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4674 
4675 // Support for scope directive
4676 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4677 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4678 
4679 #ifdef __cplusplus
4680 }
4681 #endif
4682 
4683 template <bool C, bool S>
4684 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4685 template <bool C, bool S>
4686 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4687 template <bool C, bool S>
4688 extern void __kmp_atomic_suspend_64(int th_gtid,
4689  kmp_atomic_flag_64<C, S> *flag);
4690 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4691 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4692 template <bool C, bool S>
4693 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4694 template <bool C, bool S>
4695 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4696 template <bool C, bool S>
4697 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4698 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4699 #endif
4700 template <bool C, bool S>
4701 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4702 template <bool C, bool S>
4703 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4704 template <bool C, bool S>
4705 extern void __kmp_atomic_resume_64(int target_gtid,
4706  kmp_atomic_flag_64<C, S> *flag);
4707 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4708 
4709 template <bool C, bool S>
4710 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4711  kmp_flag_32<C, S> *flag, int final_spin,
4712  int *thread_finished,
4713 #if USE_ITT_BUILD
4714  void *itt_sync_obj,
4715 #endif /* USE_ITT_BUILD */
4716  kmp_int32 is_constrained);
4717 template <bool C, bool S>
4718 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4719  kmp_flag_64<C, S> *flag, int final_spin,
4720  int *thread_finished,
4721 #if USE_ITT_BUILD
4722  void *itt_sync_obj,
4723 #endif /* USE_ITT_BUILD */
4724  kmp_int32 is_constrained);
4725 template <bool C, bool S>
4726 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4727  kmp_atomic_flag_64<C, S> *flag,
4728  int final_spin, int *thread_finished,
4729 #if USE_ITT_BUILD
4730  void *itt_sync_obj,
4731 #endif /* USE_ITT_BUILD */
4732  kmp_int32 is_constrained);
4733 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4734  kmp_flag_oncore *flag, int final_spin,
4735  int *thread_finished,
4736 #if USE_ITT_BUILD
4737  void *itt_sync_obj,
4738 #endif /* USE_ITT_BUILD */
4739  kmp_int32 is_constrained);
4740 
4741 extern int __kmp_nesting_mode;
4742 extern int __kmp_nesting_mode_nlevels;
4743 extern int *__kmp_nesting_nth_level;
4744 extern void __kmp_init_nesting_mode();
4745 extern void __kmp_set_nesting_mode_threads();
4746 
4754  FILE *f;
4755 
4756  void close() {
4757  if (f && f != stdout && f != stderr) {
4758  fclose(f);
4759  f = nullptr;
4760  }
4761  }
4762 
4763 public:
4764  kmp_safe_raii_file_t() : f(nullptr) {}
4765  kmp_safe_raii_file_t(const char *filename, const char *mode,
4766  const char *env_var = nullptr)
4767  : f(nullptr) {
4768  open(filename, mode, env_var);
4769  }
4770  kmp_safe_raii_file_t(const kmp_safe_raii_file_t &other) = delete;
4771  kmp_safe_raii_file_t &operator=(const kmp_safe_raii_file_t &other) = delete;
4772  ~kmp_safe_raii_file_t() { close(); }
4773 
4777  void open(const char *filename, const char *mode,
4778  const char *env_var = nullptr) {
4779  KMP_ASSERT(!f);
4780  f = fopen(filename, mode);
4781  if (!f) {
4782  int code = errno;
4783  if (env_var) {
4784  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4785  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4786  } else {
4787  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4788  __kmp_msg_null);
4789  }
4790  }
4791  }
4794  int try_open(const char *filename, const char *mode) {
4795  KMP_ASSERT(!f);
4796  f = fopen(filename, mode);
4797  if (!f)
4798  return errno;
4799  return 0;
4800  }
4803  void set_stdout() {
4804  KMP_ASSERT(!f);
4805  f = stdout;
4806  }
4809  void set_stderr() {
4810  KMP_ASSERT(!f);
4811  f = stderr;
4812  }
4813  operator bool() { return bool(f); }
4814  operator FILE *() { return f; }
4815 };
4816 
4817 template <typename SourceType, typename TargetType,
4818  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4819  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4820  bool isSourceSigned = std::is_signed<SourceType>::value,
4821  bool isTargetSigned = std::is_signed<TargetType>::value>
4822 struct kmp_convert {};
4823 
4824 // Both types are signed; Source smaller
4825 template <typename SourceType, typename TargetType>
4826 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4827  static TargetType to(SourceType src) { return (TargetType)src; }
4828 };
4829 // Source equal
4830 template <typename SourceType, typename TargetType>
4831 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4832  static TargetType to(SourceType src) { return src; }
4833 };
4834 // Source bigger
4835 template <typename SourceType, typename TargetType>
4836 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4837  static TargetType to(SourceType src) {
4838  KMP_ASSERT(src <= static_cast<SourceType>(
4839  (std::numeric_limits<TargetType>::max)()));
4840  KMP_ASSERT(src >= static_cast<SourceType>(
4841  (std::numeric_limits<TargetType>::min)()));
4842  return (TargetType)src;
4843  }
4844 };
4845 
4846 // Source signed, Target unsigned
4847 // Source smaller
4848 template <typename SourceType, typename TargetType>
4849 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4850  static TargetType to(SourceType src) {
4851  KMP_ASSERT(src >= 0);
4852  return (TargetType)src;
4853  }
4854 };
4855 // Source equal
4856 template <typename SourceType, typename TargetType>
4857 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4858  static TargetType to(SourceType src) {
4859  KMP_ASSERT(src >= 0);
4860  return (TargetType)src;
4861  }
4862 };
4863 // Source bigger
4864 template <typename SourceType, typename TargetType>
4865 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4866  static TargetType to(SourceType src) {
4867  KMP_ASSERT(src >= 0);
4868  KMP_ASSERT(src <= static_cast<SourceType>(
4869  (std::numeric_limits<TargetType>::max)()));
4870  return (TargetType)src;
4871  }
4872 };
4873 
4874 // Source unsigned, Target signed
4875 // Source smaller
4876 template <typename SourceType, typename TargetType>
4877 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4878  static TargetType to(SourceType src) { return (TargetType)src; }
4879 };
4880 // Source equal
4881 template <typename SourceType, typename TargetType>
4882 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4883  static TargetType to(SourceType src) {
4884  KMP_ASSERT(src <= static_cast<SourceType>(
4885  (std::numeric_limits<TargetType>::max)()));
4886  return (TargetType)src;
4887  }
4888 };
4889 // Source bigger
4890 template <typename SourceType, typename TargetType>
4891 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4892  static TargetType to(SourceType src) {
4893  KMP_ASSERT(src <= static_cast<SourceType>(
4894  (std::numeric_limits<TargetType>::max)()));
4895  return (TargetType)src;
4896  }
4897 };
4898 
4899 // Source unsigned, Target unsigned
4900 // Source smaller
4901 template <typename SourceType, typename TargetType>
4902 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4903  static TargetType to(SourceType src) { return (TargetType)src; }
4904 };
4905 // Source equal
4906 template <typename SourceType, typename TargetType>
4907 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4908  static TargetType to(SourceType src) { return src; }
4909 };
4910 // Source bigger
4911 template <typename SourceType, typename TargetType>
4912 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4913  static TargetType to(SourceType src) {
4914  KMP_ASSERT(src <= static_cast<SourceType>(
4915  (std::numeric_limits<TargetType>::max)()));
4916  return (TargetType)src;
4917  }
4918 };
4919 
4920 template <typename T1, typename T2>
4921 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4922  *dest = kmp_convert<T1, T2>::to(src);
4923 }
4924 
4925 #endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4803
void set_stderr()
Definition: kmp.h:4809
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4794
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4777
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:209
@ KMP_IDENT_IMB
Definition: kmp.h:207
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:227
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:218
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:229
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:212
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:236
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:231
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:216
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:214
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, kmp_int32 thread_limit)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_threads_list(ident_t *loc, kmp_int32 global_tid, kmp_uint32 list_length, kmp_int32 *num_threads_list)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1793
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1817
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1811
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1834
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1824
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1846
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1840
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:370
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_deinit(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:421
@ kmp_sch_runtime_simd
Definition: kmp.h:392
@ kmp_nm_ord_auto
Definition: kmp.h:440
@ kmp_sch_auto
Definition: kmp.h:377
@ kmp_nm_auto
Definition: kmp.h:423
@ kmp_distribute_static_chunked
Definition: kmp.h:408
@ kmp_sch_static
Definition: kmp.h:373
@ kmp_sch_guided_simd
Definition: kmp.h:391
@ kmp_sch_modifier_monotonic
Definition: kmp.h:458
@ kmp_sch_default
Definition: kmp.h:478
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:460
@ kmp_nm_ord_static
Definition: kmp.h:436
@ kmp_distribute_static
Definition: kmp.h:409
@ kmp_sch_guided_chunked
Definition: kmp.h:375
@ kmp_nm_static
Definition: kmp.h:419
@ kmp_sch_lower
Definition: kmp.h:371
@ kmp_nm_upper
Definition: kmp.h:442
@ kmp_ord_lower
Definition: kmp.h:397
@ kmp_ord_static
Definition: kmp.h:399
@ kmp_sch_upper
Definition: kmp.h:395
@ kmp_ord_upper
Definition: kmp.h:405
@ kmp_nm_lower
Definition: kmp.h:415
@ kmp_ord_auto
Definition: kmp.h:403
Definition: kmp.h:247
kmp_int32 reserved_1
Definition: kmp.h:248
char const * psource
Definition: kmp.h:257
kmp_int32 reserved_2
Definition: kmp.h:251
kmp_int32 reserved_3
Definition: kmp.h:256
kmp_int32 flags
Definition: kmp.h:249
Memory allocator information is shared with offload runtime.
Definition: kmp.h:1133
Memory space informaition is shared with offload runtime.
Definition: kmp.h:1125