LLVM OpenMP* Runtime Library
kmp_alloc.cpp
1 /*
2  * kmp_alloc.cpp -- private/shared dynamic memory allocation and management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_io.h"
15 #include "kmp_wrapper_malloc.h"
16 
17 // Disable bget when it is not used
18 #if KMP_USE_BGET
19 
20 /* Thread private buffer management code */
21 
22 typedef int (*bget_compact_t)(size_t, int);
23 typedef void *(*bget_acquire_t)(size_t);
24 typedef void (*bget_release_t)(void *);
25 
26 /* NOTE: bufsize must be a signed datatype */
27 
28 #if KMP_OS_WINDOWS
29 #if KMP_ARCH_X86 || KMP_ARCH_ARM
30 typedef kmp_int32 bufsize;
31 #else
32 typedef kmp_int64 bufsize;
33 #endif
34 #else
35 typedef ssize_t bufsize;
36 #endif // KMP_OS_WINDOWS
37 
38 /* The three modes of operation are, fifo search, lifo search, and best-fit */
39 
40 typedef enum bget_mode {
41  bget_mode_fifo = 0,
42  bget_mode_lifo = 1,
43  bget_mode_best = 2
44 } bget_mode_t;
45 
46 static void bpool(kmp_info_t *th, void *buffer, bufsize len);
47 static void *bget(kmp_info_t *th, bufsize size);
48 static void *bgetz(kmp_info_t *th, bufsize size);
49 static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize);
50 static void brel(kmp_info_t *th, void *buf);
51 static void bectl(kmp_info_t *th, bget_compact_t compact,
52  bget_acquire_t acquire, bget_release_t release,
53  bufsize pool_incr);
54 
55 /* BGET CONFIGURATION */
56 /* Buffer allocation size quantum: all buffers allocated are a
57  multiple of this size. This MUST be a power of two. */
58 
59 /* On IA-32 architecture with Linux* OS, malloc() does not
60  ensure 16 byte alignment */
61 
62 #if KMP_ARCH_X86 || !KMP_HAVE_QUAD
63 
64 #define SizeQuant 8
65 #define AlignType double
66 
67 #else
68 
69 #define SizeQuant 16
70 #define AlignType _Quad
71 
72 #endif
73 
74 // Define this symbol to enable the bstats() function which calculates the
75 // total free space in the buffer pool, the largest available buffer, and the
76 // total space currently allocated.
77 #define BufStats 1
78 
79 #ifdef KMP_DEBUG
80 
81 // Define this symbol to enable the bpoold() function which dumps the buffers
82 // in a buffer pool.
83 #define BufDump 1
84 
85 // Define this symbol to enable the bpoolv() function for validating a buffer
86 // pool.
87 #define BufValid 1
88 
89 // Define this symbol to enable the bufdump() function which allows dumping the
90 // contents of an allocated or free buffer.
91 #define DumpData 1
92 
93 #ifdef NOT_USED_NOW
94 
95 // Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants
96 // who attempt to use pointers into released buffers.
97 #define FreeWipe 1
98 
99 // Use a best fit algorithm when searching for space for an allocation request.
100 // This uses memory more efficiently, but allocation will be much slower.
101 #define BestFit 1
102 
103 #endif /* NOT_USED_NOW */
104 #endif /* KMP_DEBUG */
105 
106 static bufsize bget_bin_size[] = {
107  0,
108  // 1 << 6, /* .5 Cache line */
109  1 << 7, /* 1 Cache line, new */
110  1 << 8, /* 2 Cache lines */
111  1 << 9, /* 4 Cache lines, new */
112  1 << 10, /* 8 Cache lines */
113  1 << 11, /* 16 Cache lines, new */
114  1 << 12, 1 << 13, /* new */
115  1 << 14, 1 << 15, /* new */
116  1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /* 1MB */
117  1 << 21, /* 2MB */
118  1 << 22, /* 4MB */
119  1 << 23, /* 8MB */
120  1 << 24, /* 16MB */
121  1 << 25, /* 32MB */
122 };
123 
124 #define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize))
125 
126 struct bfhead;
127 
128 // Declare the interface, including the requested buffer size type, bufsize.
129 
130 /* Queue links */
131 typedef struct qlinks {
132  struct bfhead *flink; /* Forward link */
133  struct bfhead *blink; /* Backward link */
134 } qlinks_t;
135 
136 /* Header in allocated and free buffers */
137 typedef struct bhead2 {
138  kmp_info_t *bthr; /* The thread which owns the buffer pool */
139  bufsize prevfree; /* Relative link back to previous free buffer in memory or
140  0 if previous buffer is allocated. */
141  bufsize bsize; /* Buffer size: positive if free, negative if allocated. */
142 } bhead2_t;
143 
144 /* Make sure the bhead structure is a multiple of SizeQuant in size. */
145 typedef union bhead {
146  KMP_ALIGN(SizeQuant)
147  AlignType b_align;
148  char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))];
149  bhead2_t bb;
150 } bhead_t;
151 #define BH(p) ((bhead_t *)(p))
152 
153 /* Header in directly allocated buffers (by acqfcn) */
154 typedef struct bdhead {
155  bufsize tsize; /* Total size, including overhead */
156  bhead_t bh; /* Common header */
157 } bdhead_t;
158 #define BDH(p) ((bdhead_t *)(p))
159 
160 /* Header in free buffers */
161 typedef struct bfhead {
162  bhead_t bh; /* Common allocated/free header */
163  qlinks_t ql; /* Links on free list */
164 } bfhead_t;
165 #define BFH(p) ((bfhead_t *)(p))
166 
167 typedef struct thr_data {
168  bfhead_t freelist[MAX_BGET_BINS];
169 #if BufStats
170  size_t totalloc; /* Total space currently allocated */
171  long numget, numrel; /* Number of bget() and brel() calls */
172  long numpblk; /* Number of pool blocks */
173  long numpget, numprel; /* Number of block gets and rels */
174  long numdget, numdrel; /* Number of direct gets and rels */
175 #endif /* BufStats */
176 
177  /* Automatic expansion block management functions */
178  bget_compact_t compfcn;
179  bget_acquire_t acqfcn;
180  bget_release_t relfcn;
181 
182  bget_mode_t mode; /* what allocation mode to use? */
183 
184  bufsize exp_incr; /* Expansion block size */
185  bufsize pool_len; /* 0: no bpool calls have been made
186  -1: not all pool blocks are the same size
187  >0: (common) block size for all bpool calls made so far
188  */
189  bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */
190 } thr_data_t;
191 
192 /* Minimum allocation quantum: */
193 #define QLSize (sizeof(qlinks_t))
194 #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize)
195 #define MaxSize \
196  (bufsize)( \
197  ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1)))
198 // Maximum for the requested size.
199 
200 /* End sentinel: value placed in bsize field of dummy block delimiting
201  end of pool block. The most negative number which will fit in a
202  bufsize, defined in a way that the compiler will accept. */
203 
204 #define ESent \
205  ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
206 
207 /* Thread Data management routines */
208 static int bget_get_bin(bufsize size) {
209  // binary chop bins
210  int lo = 0, hi = MAX_BGET_BINS - 1;
211 
212  KMP_DEBUG_ASSERT(size > 0);
213 
214  while ((hi - lo) > 1) {
215  int mid = (lo + hi) >> 1;
216  if (size < bget_bin_size[mid])
217  hi = mid - 1;
218  else
219  lo = mid;
220  }
221 
222  KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS));
223 
224  return lo;
225 }
226 
227 static void set_thr_data(kmp_info_t *th) {
228  int i;
229  thr_data_t *data;
230 
231  data = (thr_data_t *)((!th->th.th_local.bget_data)
232  ? __kmp_allocate(sizeof(*data))
233  : th->th.th_local.bget_data);
234 
235  memset(data, '\0', sizeof(*data));
236 
237  for (i = 0; i < MAX_BGET_BINS; ++i) {
238  data->freelist[i].ql.flink = &data->freelist[i];
239  data->freelist[i].ql.blink = &data->freelist[i];
240  }
241 
242  th->th.th_local.bget_data = data;
243  th->th.th_local.bget_list = 0;
244 #if !USE_CMP_XCHG_FOR_BGET
245 #ifdef USE_QUEUING_LOCK_FOR_BGET
246  __kmp_init_lock(&th->th.th_local.bget_lock);
247 #else
248  __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock);
249 #endif /* USE_LOCK_FOR_BGET */
250 #endif /* ! USE_CMP_XCHG_FOR_BGET */
251 }
252 
253 static thr_data_t *get_thr_data(kmp_info_t *th) {
254  thr_data_t *data;
255 
256  data = (thr_data_t *)th->th.th_local.bget_data;
257 
258  KMP_DEBUG_ASSERT(data != 0);
259 
260  return data;
261 }
262 
263 /* Walk the free list and release the enqueued buffers */
264 static void __kmp_bget_dequeue(kmp_info_t *th) {
265  void *p = TCR_SYNC_PTR(th->th.th_local.bget_list);
266 
267  if (p != 0) {
268 #if USE_CMP_XCHG_FOR_BGET
269  {
270  volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
271  while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
272  CCAST(void *, old_value), nullptr)) {
273  KMP_CPU_PAUSE();
274  old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
275  }
276  p = CCAST(void *, old_value);
277  }
278 #else /* ! USE_CMP_XCHG_FOR_BGET */
279 #ifdef USE_QUEUING_LOCK_FOR_BGET
280  __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
281 #else
282  __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
283 #endif /* USE_QUEUING_LOCK_FOR_BGET */
284 
285  p = (void *)th->th.th_local.bget_list;
286  th->th.th_local.bget_list = 0;
287 
288 #ifdef USE_QUEUING_LOCK_FOR_BGET
289  __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
290 #else
291  __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
292 #endif
293 #endif /* USE_CMP_XCHG_FOR_BGET */
294 
295  /* Check again to make sure the list is not empty */
296  while (p != 0) {
297  void *buf = p;
298  bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t));
299 
300  KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
301  KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
302  (kmp_uintptr_t)th); // clear possible mark
303  KMP_DEBUG_ASSERT(b->ql.blink == 0);
304 
305  p = (void *)b->ql.flink;
306 
307  brel(th, buf);
308  }
309  }
310 }
311 
312 /* Chain together the free buffers by using the thread owner field */
313 static void __kmp_bget_enqueue(kmp_info_t *th, void *buf
314 #ifdef USE_QUEUING_LOCK_FOR_BGET
315  ,
316  kmp_int32 rel_gtid
317 #endif
318 ) {
319  bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t));
320 
321  KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
322  KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
323  (kmp_uintptr_t)th); // clear possible mark
324 
325  b->ql.blink = 0;
326 
327  KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n",
328  __kmp_gtid_from_thread(th)));
329 
330 #if USE_CMP_XCHG_FOR_BGET
331  {
332  volatile void *old_value = TCR_PTR(th->th.th_local.bget_list);
333  /* the next pointer must be set before setting bget_list to buf to avoid
334  exposing a broken list to other threads, even for an instant. */
335  b->ql.flink = BFH(CCAST(void *, old_value));
336 
337  while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
338  CCAST(void *, old_value), buf)) {
339  KMP_CPU_PAUSE();
340  old_value = TCR_PTR(th->th.th_local.bget_list);
341  /* the next pointer must be set before setting bget_list to buf to avoid
342  exposing a broken list to other threads, even for an instant. */
343  b->ql.flink = BFH(CCAST(void *, old_value));
344  }
345  }
346 #else /* ! USE_CMP_XCHG_FOR_BGET */
347 #ifdef USE_QUEUING_LOCK_FOR_BGET
348  __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid);
349 #else
350  __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
351 #endif
352 
353  b->ql.flink = BFH(th->th.th_local.bget_list);
354  th->th.th_local.bget_list = (void *)buf;
355 
356 #ifdef USE_QUEUING_LOCK_FOR_BGET
357  __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid);
358 #else
359  __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
360 #endif
361 #endif /* USE_CMP_XCHG_FOR_BGET */
362 }
363 
364 /* insert buffer back onto a new freelist */
365 static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) {
366  int bin;
367 
368  KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0);
369  KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0);
370 
371  bin = bget_get_bin(b->bh.bb.bsize);
372 
373  KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink ==
374  &thr->freelist[bin]);
375  KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink ==
376  &thr->freelist[bin]);
377 
378  b->ql.flink = &thr->freelist[bin];
379  b->ql.blink = thr->freelist[bin].ql.blink;
380 
381  thr->freelist[bin].ql.blink = b;
382  b->ql.blink->ql.flink = b;
383 }
384 
385 /* unlink the buffer from the old freelist */
386 static void __kmp_bget_remove_from_freelist(bfhead_t *b) {
387  KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
388  KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
389 
390  b->ql.blink->ql.flink = b->ql.flink;
391  b->ql.flink->ql.blink = b->ql.blink;
392 }
393 
394 /* GET STATS -- check info on free list */
395 static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) {
396  thr_data_t *thr = get_thr_data(th);
397  int bin;
398 
399  *total_free = *max_free = 0;
400 
401  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
402  bfhead_t *b, *best;
403 
404  best = &thr->freelist[bin];
405  b = best->ql.flink;
406 
407  while (b != &thr->freelist[bin]) {
408  *total_free += (b->bh.bb.bsize - sizeof(bhead_t));
409  if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize))
410  best = b;
411 
412  /* Link to next buffer */
413  b = b->ql.flink;
414  }
415 
416  if (*max_free < best->bh.bb.bsize)
417  *max_free = best->bh.bb.bsize;
418  }
419 
420  if (*max_free > (bufsize)sizeof(bhead_t))
421  *max_free -= sizeof(bhead_t);
422 }
423 
424 /* BGET -- Allocate a buffer. */
425 static void *bget(kmp_info_t *th, bufsize requested_size) {
426  thr_data_t *thr = get_thr_data(th);
427  bufsize size = requested_size;
428  bfhead_t *b;
429  void *buf;
430  int compactseq = 0;
431  int use_blink = 0;
432  /* For BestFit */
433  bfhead_t *best;
434 
435  if (size < 0 || size + sizeof(bhead_t) > MaxSize) {
436  return NULL;
437  }
438 
439  __kmp_bget_dequeue(th); /* Release any queued buffers */
440 
441  if (size < (bufsize)SizeQ) { // Need at least room for the queue links.
442  size = SizeQ;
443  }
444 #if defined(SizeQuant) && (SizeQuant > 1)
445  size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
446 #endif
447 
448  size += sizeof(bhead_t); // Add overhead in allocated buffer to size required.
449  KMP_DEBUG_ASSERT(size >= 0);
450  KMP_DEBUG_ASSERT(size % SizeQuant == 0);
451 
452  use_blink = (thr->mode == bget_mode_lifo);
453 
454  /* If a compact function was provided in the call to bectl(), wrap
455  a loop around the allocation process to allow compaction to
456  intervene in case we don't find a suitable buffer in the chain. */
457 
458  for (;;) {
459  int bin;
460 
461  for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) {
462  /* Link to next buffer */
463  b = (use_blink ? thr->freelist[bin].ql.blink
464  : thr->freelist[bin].ql.flink);
465 
466  if (thr->mode == bget_mode_best) {
467  best = &thr->freelist[bin];
468 
469  /* Scan the free list searching for the first buffer big enough
470  to hold the requested size buffer. */
471  while (b != &thr->freelist[bin]) {
472  if (b->bh.bb.bsize >= (bufsize)size) {
473  if ((best == &thr->freelist[bin]) ||
474  (b->bh.bb.bsize < best->bh.bb.bsize)) {
475  best = b;
476  }
477  }
478 
479  /* Link to next buffer */
480  b = (use_blink ? b->ql.blink : b->ql.flink);
481  }
482  b = best;
483  }
484 
485  while (b != &thr->freelist[bin]) {
486  if ((bufsize)b->bh.bb.bsize >= (bufsize)size) {
487 
488  // Buffer is big enough to satisfy the request. Allocate it to the
489  // caller. We must decide whether the buffer is large enough to split
490  // into the part given to the caller and a free buffer that remains
491  // on the free list, or whether the entire buffer should be removed
492  // from the free list and given to the caller in its entirety. We
493  // only split the buffer if enough room remains for a header plus the
494  // minimum quantum of allocation.
495  if ((b->bh.bb.bsize - (bufsize)size) >
496  (bufsize)(SizeQ + (sizeof(bhead_t)))) {
497  bhead_t *ba, *bn;
498 
499  ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size));
500  bn = BH(((char *)ba) + size);
501 
502  KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize);
503 
504  /* Subtract size from length of free block. */
505  b->bh.bb.bsize -= (bufsize)size;
506 
507  /* Link allocated buffer to the previous free buffer. */
508  ba->bb.prevfree = b->bh.bb.bsize;
509 
510  /* Plug negative size into user buffer. */
511  ba->bb.bsize = -size;
512 
513  /* Mark this buffer as owned by this thread. */
514  TCW_PTR(ba->bb.bthr,
515  th); // not an allocated address (do not mark it)
516  /* Mark buffer after this one not preceded by free block. */
517  bn->bb.prevfree = 0;
518 
519  // unlink buffer from old freelist, and reinsert into new freelist
520  __kmp_bget_remove_from_freelist(b);
521  __kmp_bget_insert_into_freelist(thr, b);
522 #if BufStats
523  thr->totalloc += (size_t)size;
524  thr->numget++; /* Increment number of bget() calls */
525 #endif
526  buf = (void *)((((char *)ba) + sizeof(bhead_t)));
527  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
528  return buf;
529  } else {
530  bhead_t *ba;
531 
532  ba = BH(((char *)b) + b->bh.bb.bsize);
533 
534  KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize);
535 
536  /* The buffer isn't big enough to split. Give the whole
537  shebang to the caller and remove it from the free list. */
538 
539  __kmp_bget_remove_from_freelist(b);
540 #if BufStats
541  thr->totalloc += (size_t)b->bh.bb.bsize;
542  thr->numget++; /* Increment number of bget() calls */
543 #endif
544  /* Negate size to mark buffer allocated. */
545  b->bh.bb.bsize = -(b->bh.bb.bsize);
546 
547  /* Mark this buffer as owned by this thread. */
548  TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark)
549  /* Zero the back pointer in the next buffer in memory
550  to indicate that this buffer is allocated. */
551  ba->bb.prevfree = 0;
552 
553  /* Give user buffer starting at queue links. */
554  buf = (void *)&(b->ql);
555  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
556  return buf;
557  }
558  }
559 
560  /* Link to next buffer */
561  b = (use_blink ? b->ql.blink : b->ql.flink);
562  }
563  }
564 
565  /* We failed to find a buffer. If there's a compact function defined,
566  notify it of the size requested. If it returns TRUE, try the allocation
567  again. */
568 
569  if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) {
570  break;
571  }
572  }
573 
574  /* No buffer available with requested size free. */
575 
576  /* Don't give up yet -- look in the reserve supply. */
577  if (thr->acqfcn != 0) {
578  if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) {
579  /* Request is too large to fit in a single expansion block.
580  Try to satisfy it by a direct buffer acquisition. */
581  bdhead_t *bdh;
582 
583  size += sizeof(bdhead_t) - sizeof(bhead_t);
584 
585  KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", (int)size));
586 
587  /* richryan */
588  bdh = BDH((*thr->acqfcn)((bufsize)size));
589  if (bdh != NULL) {
590 
591  // Mark the buffer special by setting size field of its header to zero.
592  bdh->bh.bb.bsize = 0;
593 
594  /* Mark this buffer as owned by this thread. */
595  TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated,
596  // because direct buffer never goes to free list
597  bdh->bh.bb.prevfree = 0;
598  bdh->tsize = size;
599 #if BufStats
600  thr->totalloc += (size_t)size;
601  thr->numget++; /* Increment number of bget() calls */
602  thr->numdget++; /* Direct bget() call count */
603 #endif
604  buf = (void *)(bdh + 1);
605  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
606  return buf;
607  }
608 
609  } else {
610 
611  /* Try to obtain a new expansion block */
612  void *newpool;
613 
614  KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n", (int)thr->exp_incr));
615 
616  /* richryan */
617  newpool = (*thr->acqfcn)((bufsize)thr->exp_incr);
618  KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0);
619  if (newpool != NULL) {
620  bpool(th, newpool, thr->exp_incr);
621  buf = bget(
622  th, requested_size); /* This can't, I say, can't get into a loop. */
623  return buf;
624  }
625  }
626  }
627 
628  /* Still no buffer available */
629 
630  return NULL;
631 }
632 
633 /* BGETZ -- Allocate a buffer and clear its contents to zero. We clear
634  the entire contents of the buffer to zero, not just the
635  region requested by the caller. */
636 
637 static void *bgetz(kmp_info_t *th, bufsize size) {
638  char *buf = (char *)bget(th, size);
639 
640  if (buf != NULL) {
641  bhead_t *b;
642  bufsize rsize;
643 
644  b = BH(buf - sizeof(bhead_t));
645  rsize = -(b->bb.bsize);
646  if (rsize == 0) {
647  bdhead_t *bd;
648 
649  bd = BDH(buf - sizeof(bdhead_t));
650  rsize = bd->tsize - (bufsize)sizeof(bdhead_t);
651  } else {
652  rsize -= sizeof(bhead_t);
653  }
654 
655  KMP_DEBUG_ASSERT(rsize >= size);
656 
657  (void)memset(buf, 0, (bufsize)rsize);
658  }
659  return ((void *)buf);
660 }
661 
662 /* BGETR -- Reallocate a buffer. This is a minimal implementation,
663  simply in terms of brel() and bget(). It could be
664  enhanced to allow the buffer to grow into adjacent free
665  blocks and to avoid moving data unnecessarily. */
666 
667 static void *bgetr(kmp_info_t *th, void *buf, bufsize size) {
668  void *nbuf;
669  bufsize osize; /* Old size of buffer */
670  bhead_t *b;
671 
672  nbuf = bget(th, size);
673  if (nbuf == NULL) { /* Acquire new buffer */
674  return NULL;
675  }
676  if (buf == NULL) {
677  return nbuf;
678  }
679  b = BH(((char *)buf) - sizeof(bhead_t));
680  osize = -b->bb.bsize;
681  if (osize == 0) {
682  /* Buffer acquired directly through acqfcn. */
683  bdhead_t *bd;
684 
685  bd = BDH(((char *)buf) - sizeof(bdhead_t));
686  osize = bd->tsize - (bufsize)sizeof(bdhead_t);
687  } else {
688  osize -= sizeof(bhead_t);
689  }
690 
691  KMP_DEBUG_ASSERT(osize > 0);
692 
693  (void)KMP_MEMCPY((char *)nbuf, (char *)buf, /* Copy the data */
694  (size_t)((size < osize) ? size : osize));
695  brel(th, buf);
696 
697  return nbuf;
698 }
699 
700 /* BREL -- Release a buffer. */
701 static void brel(kmp_info_t *th, void *buf) {
702  thr_data_t *thr = get_thr_data(th);
703  bfhead_t *b, *bn;
704  kmp_info_t *bth;
705 
706  KMP_DEBUG_ASSERT(buf != NULL);
707  KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
708 
709  b = BFH(((char *)buf) - sizeof(bhead_t));
710 
711  if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */
712  bdhead_t *bdh;
713 
714  bdh = BDH(((char *)buf) - sizeof(bdhead_t));
715  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
716 #if BufStats
717  thr->totalloc -= (size_t)bdh->tsize;
718  thr->numdrel++; /* Number of direct releases */
719  thr->numrel++; /* Increment number of brel() calls */
720 #endif /* BufStats */
721 #ifdef FreeWipe
722  (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t)));
723 #endif /* FreeWipe */
724 
725  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)bdh));
726 
727  KMP_DEBUG_ASSERT(thr->relfcn != 0);
728  (*thr->relfcn)((void *)bdh); /* Release it directly. */
729  return;
730  }
731 
732  bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) &
733  ~1); // clear possible mark before comparison
734  if (bth != th) {
735  /* Add this buffer to be released by the owning thread later */
736  __kmp_bget_enqueue(bth, buf
737 #ifdef USE_QUEUING_LOCK_FOR_BGET
738  ,
739  __kmp_gtid_from_thread(th)
740 #endif
741  );
742  return;
743  }
744 
745  /* Buffer size must be negative, indicating that the buffer is allocated. */
746  if (b->bh.bb.bsize >= 0) {
747  bn = NULL;
748  }
749  KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0);
750 
751  /* Back pointer in next buffer must be zero, indicating the same thing: */
752 
753  KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0);
754 
755 #if BufStats
756  thr->numrel++; /* Increment number of brel() calls */
757  thr->totalloc += (size_t)b->bh.bb.bsize;
758 #endif
759 
760  /* If the back link is nonzero, the previous buffer is free. */
761 
762  if (b->bh.bb.prevfree != 0) {
763  /* The previous buffer is free. Consolidate this buffer with it by adding
764  the length of this buffer to the previous free buffer. Note that we
765  subtract the size in the buffer being released, since it's negative to
766  indicate that the buffer is allocated. */
767  bufsize size = b->bh.bb.bsize;
768 
769  /* Make the previous buffer the one we're working on. */
770  KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize ==
771  b->bh.bb.prevfree);
772  b = BFH(((char *)b) - b->bh.bb.prevfree);
773  b->bh.bb.bsize -= size;
774 
775  /* unlink the buffer from the old freelist */
776  __kmp_bget_remove_from_freelist(b);
777  } else {
778  /* The previous buffer isn't allocated. Mark this buffer size as positive
779  (i.e. free) and fall through to place the buffer on the free list as an
780  isolated free block. */
781  b->bh.bb.bsize = -b->bh.bb.bsize;
782  }
783 
784  /* insert buffer back onto a new freelist */
785  __kmp_bget_insert_into_freelist(thr, b);
786 
787  /* Now we look at the next buffer in memory, located by advancing from
788  the start of this buffer by its size, to see if that buffer is
789  free. If it is, we combine this buffer with the next one in
790  memory, dechaining the second buffer from the free list. */
791  bn = BFH(((char *)b) + b->bh.bb.bsize);
792  if (bn->bh.bb.bsize > 0) {
793 
794  /* The buffer is free. Remove it from the free list and add
795  its size to that of our buffer. */
796  KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree ==
797  bn->bh.bb.bsize);
798 
799  __kmp_bget_remove_from_freelist(bn);
800 
801  b->bh.bb.bsize += bn->bh.bb.bsize;
802 
803  /* unlink the buffer from the old freelist, and reinsert it into the new
804  * freelist */
805  __kmp_bget_remove_from_freelist(b);
806  __kmp_bget_insert_into_freelist(thr, b);
807 
808  /* Finally, advance to the buffer that follows the newly
809  consolidated free block. We must set its backpointer to the
810  head of the consolidated free block. We know the next block
811  must be an allocated block because the process of recombination
812  guarantees that two free blocks will never be contiguous in
813  memory. */
814  bn = BFH(((char *)b) + b->bh.bb.bsize);
815  }
816 #ifdef FreeWipe
817  (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
818  (size_t)(b->bh.bb.bsize - sizeof(bfhead_t)));
819 #endif
820  KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0);
821 
822  /* The next buffer is allocated. Set the backpointer in it to point
823  to this buffer; the previous free buffer in memory. */
824 
825  bn->bh.bb.prevfree = b->bh.bb.bsize;
826 
827  /* If a block-release function is defined, and this free buffer
828  constitutes the entire block, release it. Note that pool_len
829  is defined in such a way that the test will fail unless all
830  pool blocks are the same size. */
831  if (thr->relfcn != 0 &&
832  b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
833 #if BufStats
834  if (thr->numpblk !=
835  1) { /* Do not release the last buffer until finalization time */
836 #endif
837 
838  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
839  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
840  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
841  b->bh.bb.bsize);
842 
843  /* Unlink the buffer from the free list */
844  __kmp_bget_remove_from_freelist(b);
845 
846  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
847 
848  (*thr->relfcn)(b);
849 #if BufStats
850  thr->numprel++; /* Nr of expansion block releases */
851  thr->numpblk--; /* Total number of blocks */
852  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
853 
854  // avoid leaving stale last_pool pointer around if it is being dealloced
855  if (thr->last_pool == b)
856  thr->last_pool = 0;
857  } else {
858  thr->last_pool = b;
859  }
860 #endif /* BufStats */
861  }
862 }
863 
864 /* BECTL -- Establish automatic pool expansion control */
865 static void bectl(kmp_info_t *th, bget_compact_t compact,
866  bget_acquire_t acquire, bget_release_t release,
867  bufsize pool_incr) {
868  thr_data_t *thr = get_thr_data(th);
869 
870  thr->compfcn = compact;
871  thr->acqfcn = acquire;
872  thr->relfcn = release;
873  thr->exp_incr = pool_incr;
874 }
875 
876 /* BPOOL -- Add a region of memory to the buffer pool. */
877 static void bpool(kmp_info_t *th, void *buf, bufsize len) {
878  /* int bin = 0; */
879  thr_data_t *thr = get_thr_data(th);
880  bfhead_t *b = BFH(buf);
881  bhead_t *bn;
882 
883  __kmp_bget_dequeue(th); /* Release any queued buffers */
884 
885 #ifdef SizeQuant
886  len &= ~((bufsize)(SizeQuant - 1));
887 #endif
888  if (thr->pool_len == 0) {
889  thr->pool_len = len;
890  } else if (len != thr->pool_len) {
891  thr->pool_len = -1;
892  }
893 #if BufStats
894  thr->numpget++; /* Number of block acquisitions */
895  thr->numpblk++; /* Number of blocks total */
896  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
897 #endif /* BufStats */
898 
899  /* Since the block is initially occupied by a single free buffer,
900  it had better not be (much) larger than the largest buffer
901  whose size we can store in bhead.bb.bsize. */
902  KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1));
903 
904  /* Clear the backpointer at the start of the block to indicate that
905  there is no free block prior to this one. That blocks
906  recombination when the first block in memory is released. */
907  b->bh.bb.prevfree = 0;
908 
909  /* Create a dummy allocated buffer at the end of the pool. This dummy
910  buffer is seen when a buffer at the end of the pool is released and
911  blocks recombination of the last buffer with the dummy buffer at
912  the end. The length in the dummy buffer is set to the largest
913  negative number to denote the end of the pool for diagnostic
914  routines (this specific value is not counted on by the actual
915  allocation and release functions). */
916  len -= sizeof(bhead_t);
917  b->bh.bb.bsize = (bufsize)len;
918  /* Set the owner of this buffer */
919  TCW_PTR(b->bh.bb.bthr,
920  (kmp_info_t *)((kmp_uintptr_t)th |
921  1)); // mark the buffer as allocated address
922 
923  /* Chain the new block to the free list. */
924  __kmp_bget_insert_into_freelist(thr, b);
925 
926 #ifdef FreeWipe
927  (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
928  (size_t)(len - sizeof(bfhead_t)));
929 #endif
930  bn = BH(((char *)b) + len);
931  bn->bb.prevfree = (bufsize)len;
932  /* Definition of ESent assumes two's complement! */
933  KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0));
934 
935  bn->bb.bsize = ESent;
936 }
937 
938 /* BFREED -- Dump the free lists for this thread. */
939 static void bfreed(kmp_info_t *th) {
940  int bin = 0, count = 0;
941  int gtid = __kmp_gtid_from_thread(th);
942  thr_data_t *thr = get_thr_data(th);
943 
944 #if BufStats
945  __kmp_printf_no_lock("__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC
946  " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC
947  " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC
948  " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC
949  " drel=%" KMP_INT64_SPEC "\n",
950  gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget,
951  (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk,
952  (kmp_int64)thr->numpget, (kmp_int64)thr->numprel,
953  (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel);
954 #endif
955 
956  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
957  bfhead_t *b;
958 
959  for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin];
960  b = b->ql.flink) {
961  bufsize bs = b->bh.bb.bsize;
962 
963  KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
964  KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
965  KMP_DEBUG_ASSERT(bs > 0);
966 
967  count += 1;
968 
969  __kmp_printf_no_lock(
970  "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n", gtid, b,
971  (long)bs);
972 #ifdef FreeWipe
973  {
974  char *lerr = ((char *)b) + sizeof(bfhead_t);
975  if ((bs > sizeof(bfhead_t)) &&
976  ((*lerr != 0x55) ||
977  (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) !=
978  0))) {
979  __kmp_printf_no_lock("__kmp_printpool: T#%d (Contents of above "
980  "free block have been overstored.)\n",
981  gtid);
982  }
983  }
984 #endif
985  }
986  }
987 
988  if (count == 0)
989  __kmp_printf_no_lock("__kmp_printpool: T#%d No free blocks\n", gtid);
990 }
991 
992 void __kmp_initialize_bget(kmp_info_t *th) {
993  KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0));
994 
995  set_thr_data(th);
996 
997  bectl(th, (bget_compact_t)0, (bget_acquire_t)malloc, (bget_release_t)free,
998  (bufsize)__kmp_malloc_pool_incr);
999 }
1000 
1001 void __kmp_finalize_bget(kmp_info_t *th) {
1002  thr_data_t *thr;
1003  bfhead_t *b;
1004 
1005  KMP_DEBUG_ASSERT(th != 0);
1006 
1007 #if BufStats
1008  thr = (thr_data_t *)th->th.th_local.bget_data;
1009  KMP_DEBUG_ASSERT(thr != NULL);
1010  b = thr->last_pool;
1011 
1012  /* If a block-release function is defined, and this free buffer constitutes
1013  the entire block, release it. Note that pool_len is defined in such a way
1014  that the test will fail unless all pool blocks are the same size. */
1015 
1016  // Deallocate the last pool if one exists because we no longer do it in brel()
1017  if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 &&
1018  b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
1019  KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
1020  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
1021  KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
1022  b->bh.bb.bsize);
1023 
1024  /* Unlink the buffer from the free list */
1025  __kmp_bget_remove_from_freelist(b);
1026 
1027  KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
1028 
1029  (*thr->relfcn)(b);
1030  thr->numprel++; /* Nr of expansion block releases */
1031  thr->numpblk--; /* Total number of blocks */
1032  KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
1033  }
1034 #endif /* BufStats */
1035 
1036  /* Deallocate bget_data */
1037  if (th->th.th_local.bget_data != NULL) {
1038  __kmp_free(th->th.th_local.bget_data);
1039  th->th.th_local.bget_data = NULL;
1040  }
1041 }
1042 
1043 void kmpc_set_poolsize(size_t size) {
1044  bectl(__kmp_get_thread(), (bget_compact_t)0, (bget_acquire_t)malloc,
1045  (bget_release_t)free, (bufsize)size);
1046 }
1047 
1048 size_t kmpc_get_poolsize(void) {
1049  thr_data_t *p;
1050 
1051  p = get_thr_data(__kmp_get_thread());
1052 
1053  return p->exp_incr;
1054 }
1055 
1056 void kmpc_set_poolmode(int mode) {
1057  thr_data_t *p;
1058 
1059  if (mode == bget_mode_fifo || mode == bget_mode_lifo ||
1060  mode == bget_mode_best) {
1061  p = get_thr_data(__kmp_get_thread());
1062  p->mode = (bget_mode_t)mode;
1063  }
1064 }
1065 
1066 int kmpc_get_poolmode(void) {
1067  thr_data_t *p;
1068 
1069  p = get_thr_data(__kmp_get_thread());
1070 
1071  return p->mode;
1072 }
1073 
1074 void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) {
1075  kmp_info_t *th = __kmp_get_thread();
1076  bufsize a, b;
1077 
1078  __kmp_bget_dequeue(th); /* Release any queued buffers */
1079 
1080  bcheck(th, &a, &b);
1081 
1082  *maxmem = a;
1083  *allmem = b;
1084 }
1085 
1086 void kmpc_poolprint(void) {
1087  kmp_info_t *th = __kmp_get_thread();
1088 
1089  __kmp_bget_dequeue(th); /* Release any queued buffers */
1090 
1091  bfreed(th);
1092 }
1093 
1094 #endif // #if KMP_USE_BGET
1095 
1096 void *kmpc_malloc(size_t size) {
1097  void *ptr;
1098  ptr = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1099  if (ptr != NULL) {
1100  // save allocated pointer just before one returned to user
1101  *(void **)ptr = ptr;
1102  ptr = (void **)ptr + 1;
1103  }
1104  return ptr;
1105 }
1106 
1107 #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0)
1108 
1109 void *kmpc_aligned_malloc(size_t size, size_t alignment) {
1110  void *ptr;
1111  void *ptr_allocated;
1112  KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big
1113  if (!IS_POWER_OF_TWO(alignment)) {
1114  // AC: do we need to issue a warning here?
1115  errno = EINVAL;
1116  return NULL;
1117  }
1118  size = size + sizeof(void *) + alignment;
1119  ptr_allocated = bget(__kmp_entry_thread(), (bufsize)size);
1120  if (ptr_allocated != NULL) {
1121  // save allocated pointer just before one returned to user
1122  ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) &
1123  ~(alignment - 1));
1124  *((void **)ptr - 1) = ptr_allocated;
1125  } else {
1126  ptr = NULL;
1127  }
1128  return ptr;
1129 }
1130 
1131 void *kmpc_calloc(size_t nelem, size_t elsize) {
1132  void *ptr;
1133  ptr = bgetz(__kmp_entry_thread(), (bufsize)(nelem * elsize + sizeof(ptr)));
1134  if (ptr != NULL) {
1135  // save allocated pointer just before one returned to user
1136  *(void **)ptr = ptr;
1137  ptr = (void **)ptr + 1;
1138  }
1139  return ptr;
1140 }
1141 
1142 void *kmpc_realloc(void *ptr, size_t size) {
1143  void *result = NULL;
1144  if (ptr == NULL) {
1145  // If pointer is NULL, realloc behaves like malloc.
1146  result = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1147  // save allocated pointer just before one returned to user
1148  if (result != NULL) {
1149  *(void **)result = result;
1150  result = (void **)result + 1;
1151  }
1152  } else if (size == 0) {
1153  // If size is 0, realloc behaves like free.
1154  // The thread must be registered by the call to kmpc_malloc() or
1155  // kmpc_calloc() before.
1156  // So it should be safe to call __kmp_get_thread(), not
1157  // __kmp_entry_thread().
1158  KMP_ASSERT(*((void **)ptr - 1));
1159  brel(__kmp_get_thread(), *((void **)ptr - 1));
1160  } else {
1161  result = bgetr(__kmp_entry_thread(), *((void **)ptr - 1),
1162  (bufsize)(size + sizeof(ptr)));
1163  if (result != NULL) {
1164  *(void **)result = result;
1165  result = (void **)result + 1;
1166  }
1167  }
1168  return result;
1169 }
1170 
1171 // NOTE: the library must have already been initialized by a previous allocate
1172 void kmpc_free(void *ptr) {
1173  if (!__kmp_init_serial) {
1174  return;
1175  }
1176  if (ptr != NULL) {
1177  kmp_info_t *th = __kmp_get_thread();
1178  __kmp_bget_dequeue(th); /* Release any queued buffers */
1179  // extract allocated pointer and free it
1180  KMP_ASSERT(*((void **)ptr - 1));
1181  brel(th, *((void **)ptr - 1));
1182  }
1183 }
1184 
1185 void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) {
1186  void *ptr;
1187  KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n", th,
1188  (int)size KMP_SRC_LOC_PARM));
1189  ptr = bget(th, (bufsize)size);
1190  KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n", ptr));
1191  return ptr;
1192 }
1193 
1194 void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
1195  size_t elsize KMP_SRC_LOC_DECL) {
1196  void *ptr;
1197  KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n", th,
1198  (int)nelem, (int)elsize KMP_SRC_LOC_PARM));
1199  ptr = bgetz(th, (bufsize)(nelem * elsize));
1200  KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n", ptr));
1201  return ptr;
1202 }
1203 
1204 void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
1205  size_t size KMP_SRC_LOC_DECL) {
1206  KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n", th,
1207  ptr, (int)size KMP_SRC_LOC_PARM));
1208  ptr = bgetr(th, ptr, (bufsize)size);
1209  KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n", ptr));
1210  return ptr;
1211 }
1212 
1213 void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) {
1214  KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n", th,
1215  ptr KMP_SRC_LOC_PARM));
1216  if (ptr != NULL) {
1217  __kmp_bget_dequeue(th); /* Release any queued buffers */
1218  brel(th, ptr);
1219  }
1220  KE_TRACE(30, ("<- __kmp_thread_free()\n"));
1221 }
1222 
1223 /* OMP 5.0 Memory Management support */
1224 static const char *kmp_mk_lib_name;
1225 static void *h_memkind;
1226 /* memkind experimental API: */
1227 // memkind_alloc
1228 static void *(*kmp_mk_alloc)(void *k, size_t sz);
1229 // memkind_free
1230 static void (*kmp_mk_free)(void *kind, void *ptr);
1231 // memkind_check_available
1232 static int (*kmp_mk_check)(void *kind);
1233 // kinds we are going to use
1234 static void **mk_default;
1235 static void **mk_interleave;
1236 static void **mk_hbw;
1237 static void **mk_hbw_interleave;
1238 static void **mk_hbw_preferred;
1239 static void **mk_hugetlb;
1240 static void **mk_hbw_hugetlb;
1241 static void **mk_hbw_preferred_hugetlb;
1242 static void **mk_dax_kmem;
1243 static void **mk_dax_kmem_all;
1244 static void **mk_dax_kmem_preferred;
1245 static void *(*kmp_target_alloc_host)(size_t size, int device);
1246 static void *(*kmp_target_alloc_shared)(size_t size, int device);
1247 static void *(*kmp_target_alloc_device)(size_t size, int device);
1248 static void *(*kmp_target_free)(void *ptr, int device);
1249 static bool __kmp_target_mem_available;
1250 #define KMP_IS_TARGET_MEM_SPACE(MS) \
1251  (MS == llvm_omp_target_host_mem_space || \
1252  MS == llvm_omp_target_shared_mem_space || \
1253  MS == llvm_omp_target_device_mem_space)
1254 #define KMP_IS_TARGET_MEM_ALLOC(MA) \
1255  (MA == llvm_omp_target_host_mem_alloc || \
1256  MA == llvm_omp_target_shared_mem_alloc || \
1257  MA == llvm_omp_target_device_mem_alloc)
1258 
1259 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN
1260 static inline void chk_kind(void ***pkind) {
1261  KMP_DEBUG_ASSERT(pkind);
1262  if (*pkind) // symbol found
1263  if (kmp_mk_check(**pkind)) // kind not available or error
1264  *pkind = NULL;
1265 }
1266 #endif
1267 
1268 void __kmp_init_memkind() {
1269 // as of 2018-07-31 memkind does not support Windows*, exclude it for now
1270 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN
1271  // use of statically linked memkind is problematic, as it depends on libnuma
1272  kmp_mk_lib_name = "libmemkind.so";
1273  h_memkind = dlopen(kmp_mk_lib_name, RTLD_LAZY);
1274  if (h_memkind) {
1275  kmp_mk_check = (int (*)(void *))dlsym(h_memkind, "memkind_check_available");
1276  kmp_mk_alloc =
1277  (void *(*)(void *, size_t))dlsym(h_memkind, "memkind_malloc");
1278  kmp_mk_free = (void (*)(void *, void *))dlsym(h_memkind, "memkind_free");
1279  mk_default = (void **)dlsym(h_memkind, "MEMKIND_DEFAULT");
1280  if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default &&
1281  !kmp_mk_check(*mk_default)) {
1282  __kmp_memkind_available = 1;
1283  mk_interleave = (void **)dlsym(h_memkind, "MEMKIND_INTERLEAVE");
1284  chk_kind(&mk_interleave);
1285  mk_hbw = (void **)dlsym(h_memkind, "MEMKIND_HBW");
1286  chk_kind(&mk_hbw);
1287  mk_hbw_interleave = (void **)dlsym(h_memkind, "MEMKIND_HBW_INTERLEAVE");
1288  chk_kind(&mk_hbw_interleave);
1289  mk_hbw_preferred = (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED");
1290  chk_kind(&mk_hbw_preferred);
1291  mk_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HUGETLB");
1292  chk_kind(&mk_hugetlb);
1293  mk_hbw_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HBW_HUGETLB");
1294  chk_kind(&mk_hbw_hugetlb);
1295  mk_hbw_preferred_hugetlb =
1296  (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED_HUGETLB");
1297  chk_kind(&mk_hbw_preferred_hugetlb);
1298  mk_dax_kmem = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM");
1299  chk_kind(&mk_dax_kmem);
1300  mk_dax_kmem_all = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_ALL");
1301  chk_kind(&mk_dax_kmem_all);
1302  mk_dax_kmem_preferred =
1303  (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_PREFERRED");
1304  chk_kind(&mk_dax_kmem_preferred);
1305  KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n"));
1306  return; // success
1307  }
1308  dlclose(h_memkind); // failure
1309  }
1310 #else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1311  kmp_mk_lib_name = "";
1312 #endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1313  h_memkind = NULL;
1314  kmp_mk_check = NULL;
1315  kmp_mk_alloc = NULL;
1316  kmp_mk_free = NULL;
1317  mk_default = NULL;
1318  mk_interleave = NULL;
1319  mk_hbw = NULL;
1320  mk_hbw_interleave = NULL;
1321  mk_hbw_preferred = NULL;
1322  mk_hugetlb = NULL;
1323  mk_hbw_hugetlb = NULL;
1324  mk_hbw_preferred_hugetlb = NULL;
1325  mk_dax_kmem = NULL;
1326  mk_dax_kmem_all = NULL;
1327  mk_dax_kmem_preferred = NULL;
1328 }
1329 
1330 void __kmp_fini_memkind() {
1331 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1332  if (__kmp_memkind_available)
1333  KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n"));
1334  if (h_memkind) {
1335  dlclose(h_memkind);
1336  h_memkind = NULL;
1337  }
1338  kmp_mk_check = NULL;
1339  kmp_mk_alloc = NULL;
1340  kmp_mk_free = NULL;
1341  mk_default = NULL;
1342  mk_interleave = NULL;
1343  mk_hbw = NULL;
1344  mk_hbw_interleave = NULL;
1345  mk_hbw_preferred = NULL;
1346  mk_hugetlb = NULL;
1347  mk_hbw_hugetlb = NULL;
1348  mk_hbw_preferred_hugetlb = NULL;
1349  mk_dax_kmem = NULL;
1350  mk_dax_kmem_all = NULL;
1351  mk_dax_kmem_preferred = NULL;
1352 #endif
1353 }
1354 
1355 void __kmp_init_target_mem() {
1356  *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host");
1357  *(void **)(&kmp_target_alloc_shared) =
1358  KMP_DLSYM("llvm_omp_target_alloc_shared");
1359  *(void **)(&kmp_target_alloc_device) =
1360  KMP_DLSYM("llvm_omp_target_alloc_device");
1361  *(void **)(&kmp_target_free) = KMP_DLSYM("omp_target_free");
1362  __kmp_target_mem_available = kmp_target_alloc_host &&
1363  kmp_target_alloc_shared &&
1364  kmp_target_alloc_device && kmp_target_free;
1365 }
1366 
1367 omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms,
1368  int ntraits,
1369  omp_alloctrait_t traits[]) {
1370  // OpenMP 5.0 only allows predefined memspaces
1371  KMP_DEBUG_ASSERT(ms == omp_default_mem_space || ms == omp_low_lat_mem_space ||
1372  ms == omp_large_cap_mem_space || ms == omp_const_mem_space ||
1373  ms == omp_high_bw_mem_space || KMP_IS_TARGET_MEM_SPACE(ms));
1374  kmp_allocator_t *al;
1375  int i;
1376  al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed
1377  al->memspace = ms; // not used currently
1378  for (i = 0; i < ntraits; ++i) {
1379  switch (traits[i].key) {
1380  case omp_atk_sync_hint:
1381  case omp_atk_access:
1382  case omp_atk_pinned:
1383  break;
1384  case omp_atk_alignment:
1385  __kmp_type_convert(traits[i].value, &(al->alignment));
1386  KMP_ASSERT(IS_POWER_OF_TWO(al->alignment));
1387  break;
1388  case omp_atk_pool_size:
1389  al->pool_size = traits[i].value;
1390  break;
1391  case omp_atk_fallback:
1392  al->fb = (omp_alloctrait_value_t)traits[i].value;
1393  KMP_DEBUG_ASSERT(
1394  al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb ||
1395  al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb);
1396  break;
1397  case omp_atk_fb_data:
1398  al->fb_data = RCAST(kmp_allocator_t *, traits[i].value);
1399  break;
1400  case omp_atk_partition:
1401  al->memkind = RCAST(void **, traits[i].value);
1402  break;
1403  default:
1404  KMP_ASSERT2(0, "Unexpected allocator trait");
1405  }
1406  }
1407  if (al->fb == 0) {
1408  // set default allocator
1409  al->fb = omp_atv_default_mem_fb;
1410  al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1411  } else if (al->fb == omp_atv_allocator_fb) {
1412  KMP_ASSERT(al->fb_data != NULL);
1413  } else if (al->fb == omp_atv_default_mem_fb) {
1414  al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1415  }
1416  if (__kmp_memkind_available) {
1417  // Let's use memkind library if available
1418  if (ms == omp_high_bw_mem_space) {
1419  if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) {
1420  al->memkind = mk_hbw_interleave;
1421  } else if (mk_hbw_preferred) {
1422  // AC: do not try to use MEMKIND_HBW for now, because memkind library
1423  // cannot reliably detect exhaustion of HBW memory.
1424  // It could be possible using hbw_verify_memory_region() but memkind
1425  // manual says: "Using this function in production code may result in
1426  // serious performance penalty".
1427  al->memkind = mk_hbw_preferred;
1428  } else {
1429  // HBW is requested but not available --> return NULL allocator
1430  __kmp_free(al);
1431  return omp_null_allocator;
1432  }
1433  } else if (ms == omp_large_cap_mem_space) {
1434  if (mk_dax_kmem_all) {
1435  // All pmem nodes are visited
1436  al->memkind = mk_dax_kmem_all;
1437  } else if (mk_dax_kmem) {
1438  // Only closest pmem node is visited
1439  al->memkind = mk_dax_kmem;
1440  } else {
1441  __kmp_free(al);
1442  return omp_null_allocator;
1443  }
1444  } else {
1445  if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) {
1446  al->memkind = mk_interleave;
1447  } else {
1448  al->memkind = mk_default;
1449  }
1450  }
1451  } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) {
1452  __kmp_free(al);
1453  return omp_null_allocator;
1454  } else {
1455  if (ms == omp_high_bw_mem_space) {
1456  // cannot detect HBW memory presence without memkind library
1457  __kmp_free(al);
1458  return omp_null_allocator;
1459  }
1460  }
1461  return (omp_allocator_handle_t)al;
1462 }
1463 
1464 void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) {
1465  if (allocator > kmp_max_mem_alloc)
1466  __kmp_free(allocator);
1467 }
1468 
1469 void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) {
1470  if (allocator == omp_null_allocator)
1471  allocator = omp_default_mem_alloc;
1472  __kmp_threads[gtid]->th.th_def_allocator = allocator;
1473 }
1474 
1475 omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) {
1476  return __kmp_threads[gtid]->th.th_def_allocator;
1477 }
1478 
1479 typedef struct kmp_mem_desc { // Memory block descriptor
1480  void *ptr_alloc; // Pointer returned by allocator
1481  size_t size_a; // Size of allocated memory block (initial+descriptor+align)
1482  size_t size_orig; // Original size requested
1483  void *ptr_align; // Pointer to aligned memory, returned
1484  kmp_allocator_t *allocator; // allocator
1485 } kmp_mem_desc_t;
1486 static int alignment = sizeof(void *); // align to pointer size by default
1487 
1488 // external interfaces are wrappers over internal implementation
1489 void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) {
1490  KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n", gtid, (int)size, allocator));
1491  void *ptr = __kmp_alloc(gtid, 0, size, allocator);
1492  KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n", ptr, gtid));
1493  return ptr;
1494 }
1495 
1496 void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size,
1497  omp_allocator_handle_t allocator) {
1498  KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n", gtid, (int)algn,
1499  (int)size, allocator));
1500  void *ptr = __kmp_alloc(gtid, algn, size, allocator);
1501  KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n", ptr, gtid));
1502  return ptr;
1503 }
1504 
1505 void *__kmpc_calloc(int gtid, size_t nmemb, size_t size,
1506  omp_allocator_handle_t allocator) {
1507  KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n", gtid, (int)nmemb,
1508  (int)size, allocator));
1509  void *ptr = __kmp_calloc(gtid, 0, nmemb, size, allocator);
1510  KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n", ptr, gtid));
1511  return ptr;
1512 }
1513 
1514 void *__kmpc_realloc(int gtid, void *ptr, size_t size,
1515  omp_allocator_handle_t allocator,
1516  omp_allocator_handle_t free_allocator) {
1517  KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n", gtid, ptr, (int)size,
1518  allocator, free_allocator));
1519  void *nptr = __kmp_realloc(gtid, ptr, size, allocator, free_allocator);
1520  KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n", nptr, gtid));
1521  return nptr;
1522 }
1523 
1524 void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1525  KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n", gtid, ptr, allocator));
1526  ___kmpc_free(gtid, ptr, allocator);
1527  KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n", gtid, ptr, allocator));
1528  return;
1529 }
1530 
1531 // internal implementation, called from inside the library
1532 void *__kmp_alloc(int gtid, size_t algn, size_t size,
1533  omp_allocator_handle_t allocator) {
1534  void *ptr = NULL;
1535  kmp_allocator_t *al;
1536  KMP_DEBUG_ASSERT(__kmp_init_serial);
1537  if (size == 0)
1538  return NULL;
1539  if (allocator == omp_null_allocator)
1540  allocator = __kmp_threads[gtid]->th.th_def_allocator;
1541 
1542  al = RCAST(kmp_allocator_t *, allocator);
1543 
1544  int sz_desc = sizeof(kmp_mem_desc_t);
1545  kmp_mem_desc_t desc;
1546  kmp_uintptr_t addr; // address returned by allocator
1547  kmp_uintptr_t addr_align; // address to return to caller
1548  kmp_uintptr_t addr_descr; // address of memory block descriptor
1549  size_t align = alignment; // default alignment
1550  if (allocator > kmp_max_mem_alloc && al->alignment > align)
1551  align = al->alignment; // alignment required by allocator trait
1552  if (align < algn)
1553  align = algn; // max of allocator trait, parameter and sizeof(void*)
1554  desc.size_orig = size;
1555  desc.size_a = size + sz_desc + align;
1556 
1557  if (__kmp_memkind_available) {
1558  if (allocator < kmp_max_mem_alloc) {
1559  // pre-defined allocator
1560  if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1561  ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a);
1562  } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1563  ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a);
1564  } else {
1565  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1566  }
1567  } else if (al->pool_size > 0) {
1568  // custom allocator with pool size requested
1569  kmp_uint64 used =
1570  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1571  if (used + desc.size_a > al->pool_size) {
1572  // not enough space, need to go fallback path
1573  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1574  if (al->fb == omp_atv_default_mem_fb) {
1575  al = (kmp_allocator_t *)omp_default_mem_alloc;
1576  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1577  } else if (al->fb == omp_atv_abort_fb) {
1578  KMP_ASSERT(0); // abort fallback requested
1579  } else if (al->fb == omp_atv_allocator_fb) {
1580  KMP_ASSERT(al != al->fb_data);
1581  al = al->fb_data;
1582  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1583  } // else ptr == NULL;
1584  } else {
1585  // pool has enough space
1586  ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1587  if (ptr == NULL) {
1588  if (al->fb == omp_atv_default_mem_fb) {
1589  al = (kmp_allocator_t *)omp_default_mem_alloc;
1590  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1591  } else if (al->fb == omp_atv_abort_fb) {
1592  KMP_ASSERT(0); // abort fallback requested
1593  } else if (al->fb == omp_atv_allocator_fb) {
1594  KMP_ASSERT(al != al->fb_data);
1595  al = al->fb_data;
1596  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1597  }
1598  }
1599  }
1600  } else {
1601  // custom allocator, pool size not requested
1602  ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1603  if (ptr == NULL) {
1604  if (al->fb == omp_atv_default_mem_fb) {
1605  al = (kmp_allocator_t *)omp_default_mem_alloc;
1606  ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1607  } else if (al->fb == omp_atv_abort_fb) {
1608  KMP_ASSERT(0); // abort fallback requested
1609  } else if (al->fb == omp_atv_allocator_fb) {
1610  KMP_ASSERT(al != al->fb_data);
1611  al = al->fb_data;
1612  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1613  }
1614  }
1615  }
1616  } else if (allocator < kmp_max_mem_alloc) {
1617  if (KMP_IS_TARGET_MEM_ALLOC(allocator)) {
1618  // Use size input directly as the memory may not be accessible on host.
1619  // Use default device for now.
1620  if (__kmp_target_mem_available) {
1621  kmp_int32 device =
1622  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1623  if (allocator == llvm_omp_target_host_mem_alloc)
1624  ptr = kmp_target_alloc_host(size, device);
1625  else if (allocator == llvm_omp_target_shared_mem_alloc)
1626  ptr = kmp_target_alloc_shared(size, device);
1627  else // allocator == llvm_omp_target_device_mem_alloc
1628  ptr = kmp_target_alloc_device(size, device);
1629  }
1630  return ptr;
1631  }
1632 
1633  // pre-defined allocator
1634  if (allocator == omp_high_bw_mem_alloc) {
1635  // ptr = NULL;
1636  } else if (allocator == omp_large_cap_mem_alloc) {
1637  // warnings?
1638  } else {
1639  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1640  }
1641  } else if (KMP_IS_TARGET_MEM_SPACE(al->memspace)) {
1642  if (__kmp_target_mem_available) {
1643  kmp_int32 device =
1644  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1645  if (al->memspace == llvm_omp_target_host_mem_space)
1646  ptr = kmp_target_alloc_host(size, device);
1647  else if (al->memspace == llvm_omp_target_shared_mem_space)
1648  ptr = kmp_target_alloc_shared(size, device);
1649  else // al->memspace == llvm_omp_target_device_mem_space
1650  ptr = kmp_target_alloc_device(size, device);
1651  }
1652  return ptr;
1653  } else if (al->pool_size > 0) {
1654  // custom allocator with pool size requested
1655  kmp_uint64 used =
1656  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1657  if (used + desc.size_a > al->pool_size) {
1658  // not enough space, need to go fallback path
1659  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1660  if (al->fb == omp_atv_default_mem_fb) {
1661  al = (kmp_allocator_t *)omp_default_mem_alloc;
1662  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1663  } else if (al->fb == omp_atv_abort_fb) {
1664  KMP_ASSERT(0); // abort fallback requested
1665  } else if (al->fb == omp_atv_allocator_fb) {
1666  KMP_ASSERT(al != al->fb_data);
1667  al = al->fb_data;
1668  return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1669  } // else ptr == NULL;
1670  } else {
1671  // pool has enough space
1672  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1673  if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1674  KMP_ASSERT(0); // abort fallback requested
1675  } // no sense to look for another fallback because of same internal alloc
1676  }
1677  } else {
1678  // custom allocator, pool size not requested
1679  ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1680  if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1681  KMP_ASSERT(0); // abort fallback requested
1682  } // no sense to look for another fallback because of same internal alloc
1683  }
1684  KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n", gtid, ptr, desc.size_a));
1685  if (ptr == NULL)
1686  return NULL;
1687 
1688  addr = (kmp_uintptr_t)ptr;
1689  addr_align = (addr + sz_desc + align - 1) & ~(align - 1);
1690  addr_descr = addr_align - sz_desc;
1691 
1692  desc.ptr_alloc = ptr;
1693  desc.ptr_align = (void *)addr_align;
1694  desc.allocator = al;
1695  *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents
1696  KMP_MB();
1697 
1698  return desc.ptr_align;
1699 }
1700 
1701 void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size,
1702  omp_allocator_handle_t allocator) {
1703  void *ptr = NULL;
1704  kmp_allocator_t *al;
1705  KMP_DEBUG_ASSERT(__kmp_init_serial);
1706 
1707  if (allocator == omp_null_allocator)
1708  allocator = __kmp_threads[gtid]->th.th_def_allocator;
1709 
1710  al = RCAST(kmp_allocator_t *, allocator);
1711 
1712  if (nmemb == 0 || size == 0)
1713  return ptr;
1714 
1715  if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) {
1716  if (al->fb == omp_atv_abort_fb) {
1717  KMP_ASSERT(0);
1718  }
1719  return ptr;
1720  }
1721 
1722  ptr = __kmp_alloc(gtid, algn, nmemb * size, allocator);
1723 
1724  if (ptr) {
1725  memset(ptr, 0x00, nmemb * size);
1726  }
1727  return ptr;
1728 }
1729 
1730 void *__kmp_realloc(int gtid, void *ptr, size_t size,
1731  omp_allocator_handle_t allocator,
1732  omp_allocator_handle_t free_allocator) {
1733  void *nptr = NULL;
1734  KMP_DEBUG_ASSERT(__kmp_init_serial);
1735 
1736  if (size == 0) {
1737  if (ptr != NULL)
1738  ___kmpc_free(gtid, ptr, free_allocator);
1739  return nptr;
1740  }
1741 
1742  nptr = __kmp_alloc(gtid, 0, size, allocator);
1743 
1744  if (nptr != NULL && ptr != NULL) {
1745  kmp_mem_desc_t desc;
1746  kmp_uintptr_t addr_align; // address to return to caller
1747  kmp_uintptr_t addr_descr; // address of memory block descriptor
1748 
1749  addr_align = (kmp_uintptr_t)ptr;
1750  addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1751  desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1752 
1753  KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1754  KMP_DEBUG_ASSERT(desc.size_orig > 0);
1755  KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a);
1756  KMP_MEMCPY((char *)nptr, (char *)ptr,
1757  (size_t)((size < desc.size_orig) ? size : desc.size_orig));
1758  }
1759 
1760  if (nptr != NULL) {
1761  ___kmpc_free(gtid, ptr, free_allocator);
1762  }
1763 
1764  return nptr;
1765 }
1766 
1767 void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1768  if (ptr == NULL)
1769  return;
1770 
1771  kmp_allocator_t *al;
1772  omp_allocator_handle_t oal;
1773  al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator));
1774  kmp_mem_desc_t desc;
1775  kmp_uintptr_t addr_align; // address to return to caller
1776  kmp_uintptr_t addr_descr; // address of memory block descriptor
1777  if (KMP_IS_TARGET_MEM_ALLOC(allocator) ||
1778  (allocator > kmp_max_mem_alloc &&
1779  KMP_IS_TARGET_MEM_SPACE(al->memspace))) {
1780  KMP_DEBUG_ASSERT(kmp_target_free);
1781  kmp_int32 device =
1782  __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1783  kmp_target_free(ptr, device);
1784  return;
1785  }
1786 
1787  addr_align = (kmp_uintptr_t)ptr;
1788  addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1789  desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1790 
1791  KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1792  if (allocator) {
1793  KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data);
1794  }
1795  al = desc.allocator;
1796  oal = (omp_allocator_handle_t)al; // cast to void* for comparisons
1797  KMP_DEBUG_ASSERT(al);
1798 
1799  if (__kmp_memkind_available) {
1800  if (oal < kmp_max_mem_alloc) {
1801  // pre-defined allocator
1802  if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1803  kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc);
1804  } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1805  kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc);
1806  } else {
1807  kmp_mk_free(*mk_default, desc.ptr_alloc);
1808  }
1809  } else {
1810  if (al->pool_size > 0) { // custom allocator with pool size requested
1811  kmp_uint64 used =
1812  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1813  (void)used; // to suppress compiler warning
1814  KMP_DEBUG_ASSERT(used >= desc.size_a);
1815  }
1816  kmp_mk_free(*al->memkind, desc.ptr_alloc);
1817  }
1818  } else {
1819  if (oal > kmp_max_mem_alloc && al->pool_size > 0) {
1820  kmp_uint64 used =
1821  KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1822  (void)used; // to suppress compiler warning
1823  KMP_DEBUG_ASSERT(used >= desc.size_a);
1824  }
1825  __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc);
1826  }
1827 }
1828 
1829 /* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes
1830  memory leaks, but it may be useful for debugging memory corruptions, used
1831  freed pointers, etc. */
1832 /* #define LEAK_MEMORY */
1833 struct kmp_mem_descr { // Memory block descriptor.
1834  void *ptr_allocated; // Pointer returned by malloc(), subject for free().
1835  size_t size_allocated; // Size of allocated memory block.
1836  void *ptr_aligned; // Pointer to aligned memory, to be used by client code.
1837  size_t size_aligned; // Size of aligned memory block.
1838 };
1839 typedef struct kmp_mem_descr kmp_mem_descr_t;
1840 
1841 /* Allocate memory on requested boundary, fill allocated memory with 0x00.
1842  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1843  error. Must use __kmp_free when freeing memory allocated by this routine! */
1844 static void *___kmp_allocate_align(size_t size,
1845  size_t alignment KMP_SRC_LOC_DECL) {
1846  /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than
1847  requested to return properly aligned pointer. Original pointer returned
1848  by malloc() and size of allocated block is saved in descriptor just
1849  before the aligned pointer. This information used by __kmp_free() -- it
1850  has to pass to free() original pointer, not aligned one.
1851 
1852  +---------+------------+-----------------------------------+---------+
1853  | padding | descriptor | aligned block | padding |
1854  +---------+------------+-----------------------------------+---------+
1855  ^ ^
1856  | |
1857  | +- Aligned pointer returned to caller
1858  +- Pointer returned by malloc()
1859 
1860  Aligned block is filled with zeros, paddings are filled with 0xEF. */
1861 
1862  kmp_mem_descr_t descr;
1863  kmp_uintptr_t addr_allocated; // Address returned by malloc().
1864  kmp_uintptr_t addr_aligned; // Aligned address to return to caller.
1865  kmp_uintptr_t addr_descr; // Address of memory block descriptor.
1866 
1867  KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n",
1868  (int)size, (int)alignment KMP_SRC_LOC_PARM));
1869 
1870  KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too
1871  KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t));
1872  // Make sure kmp_uintptr_t is enough to store addresses.
1873 
1874  descr.size_aligned = size;
1875  descr.size_allocated =
1876  descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment;
1877 
1878 #if KMP_DEBUG
1879  descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_);
1880 #else
1881  descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM);
1882 #endif
1883  KE_TRACE(10, (" malloc( %d ) returned %p\n", (int)descr.size_allocated,
1884  descr.ptr_allocated));
1885  if (descr.ptr_allocated == NULL) {
1886  KMP_FATAL(OutOfHeapMemory);
1887  }
1888 
1889  addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1890  addr_aligned =
1891  (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1);
1892  addr_descr = addr_aligned - sizeof(kmp_mem_descr_t);
1893 
1894  descr.ptr_aligned = (void *)addr_aligned;
1895 
1896  KE_TRACE(26, (" ___kmp_allocate_align: "
1897  "ptr_allocated=%p, size_allocated=%d, "
1898  "ptr_aligned=%p, size_aligned=%d\n",
1899  descr.ptr_allocated, (int)descr.size_allocated,
1900  descr.ptr_aligned, (int)descr.size_aligned));
1901 
1902  KMP_DEBUG_ASSERT(addr_allocated <= addr_descr);
1903  KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned);
1904  KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1905  addr_allocated + descr.size_allocated);
1906  KMP_DEBUG_ASSERT(addr_aligned % alignment == 0);
1907 #ifdef KMP_DEBUG
1908  memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1909 // Fill allocated memory block with 0xEF.
1910 #endif
1911  memset(descr.ptr_aligned, 0x00, descr.size_aligned);
1912  // Fill the aligned memory block (which is intended for using by caller) with
1913  // 0x00. Do not
1914  // put this filling under KMP_DEBUG condition! Many callers expect zeroed
1915  // memory. (Padding
1916  // bytes remain filled with 0xEF in debugging library.)
1917  *((kmp_mem_descr_t *)addr_descr) = descr;
1918 
1919  KMP_MB();
1920 
1921  KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n", descr.ptr_aligned));
1922  return descr.ptr_aligned;
1923 } // func ___kmp_allocate_align
1924 
1925 /* Allocate memory on cache line boundary, fill allocated memory with 0x00.
1926  Do not call this func directly! Use __kmp_allocate macro instead.
1927  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1928  error. Must use __kmp_free when freeing memory allocated by this routine! */
1929 void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) {
1930  void *ptr;
1931  KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n",
1932  (int)size KMP_SRC_LOC_PARM));
1933  ptr = ___kmp_allocate_align(size, __kmp_align_alloc KMP_SRC_LOC_PARM);
1934  KE_TRACE(25, ("<- __kmp_allocate() returns %p\n", ptr));
1935  return ptr;
1936 } // func ___kmp_allocate
1937 
1938 /* Allocate memory on page boundary, fill allocated memory with 0x00.
1939  Does not call this func directly! Use __kmp_page_allocate macro instead.
1940  NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1941  error. Must use __kmp_free when freeing memory allocated by this routine! */
1942 void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) {
1943  int page_size = 8 * 1024;
1944  void *ptr;
1945 
1946  KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n",
1947  (int)size KMP_SRC_LOC_PARM));
1948  ptr = ___kmp_allocate_align(size, page_size KMP_SRC_LOC_PARM);
1949  KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n", (int)size, ptr));
1950  return ptr;
1951 } // ___kmp_page_allocate
1952 
1953 /* Free memory allocated by __kmp_allocate() and __kmp_page_allocate().
1954  In debug mode, fill the memory block with 0xEF before call to free(). */
1955 void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) {
1956  kmp_mem_descr_t descr;
1957 #if KMP_DEBUG
1958  kmp_uintptr_t addr_allocated; // Address returned by malloc().
1959  kmp_uintptr_t addr_aligned; // Aligned address passed by caller.
1960 #endif
1961  KE_TRACE(25,
1962  ("-> __kmp_free( %p ) called from %s:%d\n", ptr KMP_SRC_LOC_PARM));
1963  KMP_ASSERT(ptr != NULL);
1964 
1965  descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t));
1966 
1967  KE_TRACE(26, (" __kmp_free: "
1968  "ptr_allocated=%p, size_allocated=%d, "
1969  "ptr_aligned=%p, size_aligned=%d\n",
1970  descr.ptr_allocated, (int)descr.size_allocated,
1971  descr.ptr_aligned, (int)descr.size_aligned));
1972 #if KMP_DEBUG
1973  addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1974  addr_aligned = (kmp_uintptr_t)descr.ptr_aligned;
1975  KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0);
1976  KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr);
1977  KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned);
1978  KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated);
1979  KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1980  addr_allocated + descr.size_allocated);
1981  memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1982 // Fill memory block with 0xEF, it helps catch using freed memory.
1983 #endif
1984 
1985 #ifndef LEAK_MEMORY
1986  KE_TRACE(10, (" free( %p )\n", descr.ptr_allocated));
1987 #ifdef KMP_DEBUG
1988  _free_src_loc(descr.ptr_allocated, _file_, _line_);
1989 #else
1990  free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM);
1991 #endif
1992 #endif
1993  KMP_MB();
1994  KE_TRACE(25, ("<- __kmp_free() returns\n"));
1995 } // func ___kmp_free
1996 
1997 #if USE_FAST_MEMORY == 3
1998 // Allocate fast memory by first scanning the thread's free lists
1999 // If a chunk the right size exists, grab it off the free list.
2000 // Otherwise allocate normally using kmp_thread_malloc.
2001 
2002 // AC: How to choose the limit? Just get 16 for now...
2003 #define KMP_FREE_LIST_LIMIT 16
2004 
2005 // Always use 128 bytes for determining buckets for caching memory blocks
2006 #define DCACHE_LINE 128
2007 
2008 void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) {
2009  void *ptr;
2010  size_t num_lines, idx;
2011  int index;
2012  void *alloc_ptr;
2013  size_t alloc_size;
2014  kmp_mem_descr_t *descr;
2015 
2016  KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n",
2017  __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM));
2018 
2019  num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE;
2020  idx = num_lines - 1;
2021  KMP_DEBUG_ASSERT(idx >= 0);
2022  if (idx < 2) {
2023  index = 0; // idx is [ 0, 1 ], use first free list
2024  num_lines = 2; // 1, 2 cache lines or less than cache line
2025  } else if ((idx >>= 2) == 0) {
2026  index = 1; // idx is [ 2, 3 ], use second free list
2027  num_lines = 4; // 3, 4 cache lines
2028  } else if ((idx >>= 2) == 0) {
2029  index = 2; // idx is [ 4, 15 ], use third free list
2030  num_lines = 16; // 5, 6, ..., 16 cache lines
2031  } else if ((idx >>= 2) == 0) {
2032  index = 3; // idx is [ 16, 63 ], use fourth free list
2033  num_lines = 64; // 17, 18, ..., 64 cache lines
2034  } else {
2035  goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists
2036  }
2037 
2038  ptr = this_thr->th.th_free_lists[index].th_free_list_self;
2039  if (ptr != NULL) {
2040  // pop the head of no-sync free list
2041  this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2042  KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2043  sizeof(kmp_mem_descr_t)))
2044  ->ptr_aligned);
2045  goto end;
2046  }
2047  ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2048  if (ptr != NULL) {
2049  // no-sync free list is empty, use sync free list (filled in by other
2050  // threads only)
2051  // pop the head of the sync free list, push NULL instead
2052  while (!KMP_COMPARE_AND_STORE_PTR(
2053  &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) {
2054  KMP_CPU_PAUSE();
2055  ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2056  }
2057  // push the rest of chain into no-sync free list (can be NULL if there was
2058  // the only block)
2059  this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2060  KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2061  sizeof(kmp_mem_descr_t)))
2062  ->ptr_aligned);
2063  goto end;
2064  }
2065 
2066 alloc_call:
2067  // haven't found block in the free lists, thus allocate it
2068  size = num_lines * DCACHE_LINE;
2069 
2070  alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE;
2071  KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with "
2072  "alloc_size %d\n",
2073  __kmp_gtid_from_thread(this_thr), alloc_size));
2074  alloc_ptr = bget(this_thr, (bufsize)alloc_size);
2075 
2076  // align ptr to DCACHE_LINE
2077  ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) +
2078  DCACHE_LINE) &
2079  ~(DCACHE_LINE - 1));
2080  descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2081 
2082  descr->ptr_allocated = alloc_ptr; // remember allocated pointer
2083  // we don't need size_allocated
2084  descr->ptr_aligned = (void *)this_thr; // remember allocating thread
2085  // (it is already saved in bget buffer,
2086  // but we may want to use another allocator in future)
2087  descr->size_aligned = size;
2088 
2089 end:
2090  KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n",
2091  __kmp_gtid_from_thread(this_thr), ptr));
2092  return ptr;
2093 } // func __kmp_fast_allocate
2094 
2095 // Free fast memory and place it on the thread's free list if it is of
2096 // the correct size.
2097 void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) {
2098  kmp_mem_descr_t *descr;
2099  kmp_info_t *alloc_thr;
2100  size_t size;
2101  size_t idx;
2102  int index;
2103 
2104  KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n",
2105  __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM));
2106  KMP_ASSERT(ptr != NULL);
2107 
2108  descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2109 
2110  KE_TRACE(26, (" __kmp_fast_free: size_aligned=%d\n",
2111  (int)descr->size_aligned));
2112 
2113  size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines
2114 
2115  idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block
2116  if (idx == size) {
2117  index = 0; // 2 cache lines
2118  } else if ((idx <<= 1) == size) {
2119  index = 1; // 4 cache lines
2120  } else if ((idx <<= 2) == size) {
2121  index = 2; // 16 cache lines
2122  } else if ((idx <<= 2) == size) {
2123  index = 3; // 64 cache lines
2124  } else {
2125  KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64);
2126  goto free_call; // 65 or more cache lines ( > 8KB )
2127  }
2128 
2129  alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block
2130  if (alloc_thr == this_thr) {
2131  // push block to self no-sync free list, linking previous head (LIFO)
2132  *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self;
2133  this_thr->th.th_free_lists[index].th_free_list_self = ptr;
2134  } else {
2135  void *head = this_thr->th.th_free_lists[index].th_free_list_other;
2136  if (head == NULL) {
2137  // Create new free list
2138  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2139  *((void **)ptr) = NULL; // mark the tail of the list
2140  descr->size_allocated = (size_t)1; // head of the list keeps its length
2141  } else {
2142  // need to check existed "other" list's owner thread and size of queue
2143  kmp_mem_descr_t *dsc =
2144  (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t));
2145  // allocating thread, same for all queue nodes
2146  kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned);
2147  size_t q_sz =
2148  dsc->size_allocated + 1; // new size in case we add current task
2149  if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) {
2150  // we can add current task to "other" list, no sync needed
2151  *((void **)ptr) = head;
2152  descr->size_allocated = q_sz;
2153  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2154  } else {
2155  // either queue blocks owner is changing or size limit exceeded
2156  // return old queue to allocating thread (q_th) synchronously,
2157  // and start new list for alloc_thr's tasks
2158  void *old_ptr;
2159  void *tail = head;
2160  void *next = *((void **)head);
2161  while (next != NULL) {
2162  KMP_DEBUG_ASSERT(
2163  // queue size should decrease by 1 each step through the list
2164  ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t)))
2165  ->size_allocated +
2166  1 ==
2167  ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t)))
2168  ->size_allocated);
2169  tail = next; // remember tail node
2170  next = *((void **)next);
2171  }
2172  KMP_DEBUG_ASSERT(q_th != NULL);
2173  // push block to owner's sync free list
2174  old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2175  /* the next pointer must be set before setting free_list to ptr to avoid
2176  exposing a broken list to other threads, even for an instant. */
2177  *((void **)tail) = old_ptr;
2178 
2179  while (!KMP_COMPARE_AND_STORE_PTR(
2180  &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) {
2181  KMP_CPU_PAUSE();
2182  old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2183  *((void **)tail) = old_ptr;
2184  }
2185 
2186  // start new list of not-selt tasks
2187  this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2188  *((void **)ptr) = NULL;
2189  descr->size_allocated = (size_t)1; // head of queue keeps its length
2190  }
2191  }
2192  }
2193  goto end;
2194 
2195 free_call:
2196  KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n",
2197  __kmp_gtid_from_thread(this_thr), size));
2198  __kmp_bget_dequeue(this_thr); /* Release any queued buffers */
2199  brel(this_thr, descr->ptr_allocated);
2200 
2201 end:
2202  KE_TRACE(25, ("<- __kmp_fast_free() returns\n"));
2203 
2204 } // func __kmp_fast_free
2205 
2206 // Initialize the thread free lists related to fast memory
2207 // Only do this when a thread is initially created.
2208 void __kmp_initialize_fast_memory(kmp_info_t *this_thr) {
2209  KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n", this_thr));
2210 
2211  memset(this_thr->th.th_free_lists, 0, NUM_LISTS * sizeof(kmp_free_list_t));
2212 }
2213 
2214 // Free the memory in the thread free lists related to fast memory
2215 // Only do this when a thread is being reaped (destroyed).
2216 void __kmp_free_fast_memory(kmp_info_t *th) {
2217  // Suppose we use BGET underlying allocator, walk through its structures...
2218  int bin;
2219  thr_data_t *thr = get_thr_data(th);
2220  void **lst = NULL;
2221 
2222  KE_TRACE(
2223  5, ("__kmp_free_fast_memory: Called T#%d\n", __kmp_gtid_from_thread(th)));
2224 
2225  __kmp_bget_dequeue(th); // Release any queued buffers
2226 
2227  // Dig through free lists and extract all allocated blocks
2228  for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
2229  bfhead_t *b = thr->freelist[bin].ql.flink;
2230  while (b != &thr->freelist[bin]) {
2231  if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address
2232  *((void **)b) =
2233  lst; // link the list (override bthr, but keep flink yet)
2234  lst = (void **)b; // push b into lst
2235  }
2236  b = b->ql.flink; // get next buffer
2237  }
2238  }
2239  while (lst != NULL) {
2240  void *next = *lst;
2241  KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n",
2242  lst, next, th, __kmp_gtid_from_thread(th)));
2243  (*thr->relfcn)(lst);
2244 #if BufStats
2245  // count blocks to prevent problems in __kmp_finalize_bget()
2246  thr->numprel++; /* Nr of expansion block releases */
2247  thr->numpblk--; /* Total number of blocks */
2248 #endif
2249  lst = (void **)next;
2250  }
2251 
2252  KE_TRACE(
2253  5, ("__kmp_free_fast_memory: Freed T#%d\n", __kmp_gtid_from_thread(th)));
2254 }
2255 
2256 #endif // USE_FAST_MEMORY