LLVM OpenMP* Runtime Library
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#if HWLOC_API_VERSION >= 0x00020000
104// hwloc 2.0 changed type of depth of object from unsigned to int
105typedef int kmp_hwloc_depth_t;
106#else
107typedef unsigned int kmp_hwloc_depth_t;
108#endif
109#endif
110
111#if KMP_ARCH_X86 || KMP_ARCH_X86_64
112#include <xmmintrin.h>
113#endif
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#if USE_DEBUGGER
119#include "kmp_debugger.h"
120#endif
121#include "kmp_i18n.h"
122
123#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
124
125#include "kmp_wrapper_malloc.h"
126#if KMP_OS_UNIX
127#include <unistd.h>
128#if !defined NSIG && defined _NSIG
129#define NSIG _NSIG
130#endif
131#endif
132
133#if KMP_OS_LINUX
134#pragma weak clock_gettime
135#endif
136
137#if OMPT_SUPPORT
138#include "ompt-internal.h"
139#endif
140
141#if OMPD_SUPPORT
142#include "ompd-specific.h"
143#endif
144
145#ifndef UNLIKELY
146#define UNLIKELY(x) (x)
147#endif
148
149// Affinity format function
150#include "kmp_str.h"
151
152// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
153// 3 - fast allocation using sync, non-sync free lists of any size, non-self
154// free lists of limited size.
155#ifndef USE_FAST_MEMORY
156#define USE_FAST_MEMORY 3
157#endif
158
159#ifndef KMP_NESTED_HOT_TEAMS
160#define KMP_NESTED_HOT_TEAMS 0
161#define USE_NESTED_HOT_ARG(x)
162#else
163#if KMP_NESTED_HOT_TEAMS
164#define USE_NESTED_HOT_ARG(x) , x
165#else
166#define USE_NESTED_HOT_ARG(x)
167#endif
168#endif
169
170// Assume using BGET compare_exchange instruction instead of lock by default.
171#ifndef USE_CMP_XCHG_FOR_BGET
172#define USE_CMP_XCHG_FOR_BGET 1
173#endif
174
175// Test to see if queuing lock is better than bootstrap lock for bget
176// #ifndef USE_QUEUING_LOCK_FOR_BGET
177// #define USE_QUEUING_LOCK_FOR_BGET
178// #endif
179
180#define KMP_NSEC_PER_SEC 1000000000L
181#define KMP_USEC_PER_SEC 1000000L
182
191enum {
196 /* 0x04 is no longer used */
205 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
206 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
207 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
208
209 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
210 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
211
223 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
224 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
225 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
226 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
227 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
228};
229
233typedef struct ident {
234 kmp_int32 reserved_1;
235 kmp_int32 flags;
237 kmp_int32 reserved_2;
238#if USE_ITT_BUILD
239/* but currently used for storing region-specific ITT */
240/* contextual information. */
241#endif /* USE_ITT_BUILD */
242 kmp_int32 reserved_3;
243 char const *psource;
247 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
248 kmp_int32 get_openmp_version() {
249 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
250 }
256// Some forward declarations.
257typedef union kmp_team kmp_team_t;
258typedef struct kmp_taskdata kmp_taskdata_t;
259typedef union kmp_task_team kmp_task_team_t;
260typedef union kmp_team kmp_team_p;
261typedef union kmp_info kmp_info_p;
262typedef union kmp_root kmp_root_p;
263
264template <bool C = false, bool S = true> class kmp_flag_32;
265template <bool C = false, bool S = true> class kmp_flag_64;
266class kmp_flag_oncore;
267
268#ifdef __cplusplus
269extern "C" {
270#endif
271
272/* ------------------------------------------------------------------------ */
273
274/* Pack two 32-bit signed integers into a 64-bit signed integer */
275/* ToDo: Fix word ordering for big-endian machines. */
276#define KMP_PACK_64(HIGH_32, LOW_32) \
277 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
278
279// Generic string manipulation macros. Assume that _x is of type char *
280#define SKIP_WS(_x) \
281 { \
282 while (*(_x) == ' ' || *(_x) == '\t') \
283 (_x)++; \
284 }
285#define SKIP_DIGITS(_x) \
286 { \
287 while (*(_x) >= '0' && *(_x) <= '9') \
288 (_x)++; \
289 }
290#define SKIP_TOKEN(_x) \
291 { \
292 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
293 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
294 (_x)++; \
295 }
296#define SKIP_TO(_x, _c) \
297 { \
298 while (*(_x) != '\0' && *(_x) != (_c)) \
299 (_x)++; \
300 }
301
302/* ------------------------------------------------------------------------ */
303
304#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
305#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
306
307/* ------------------------------------------------------------------------ */
308/* Enumeration types */
309
310enum kmp_state_timer {
311 ts_stop,
312 ts_start,
313 ts_pause,
314
315 ts_last_state
316};
317
318enum dynamic_mode {
319 dynamic_default,
320#ifdef USE_LOAD_BALANCE
321 dynamic_load_balance,
322#endif /* USE_LOAD_BALANCE */
323 dynamic_random,
324 dynamic_thread_limit,
325 dynamic_max
326};
327
328/* external schedule constants, duplicate enum omp_sched in omp.h in order to
329 * not include it here */
330#ifndef KMP_SCHED_TYPE_DEFINED
331#define KMP_SCHED_TYPE_DEFINED
332typedef enum kmp_sched {
333 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
334 // Note: need to adjust __kmp_sch_map global array in case enum is changed
335 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
336 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
337 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
338 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
339 kmp_sched_upper_std = 5, // upper bound for standard schedules
340 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
341 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
342#if KMP_STATIC_STEAL_ENABLED
343 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
344#endif
345 kmp_sched_upper,
346 kmp_sched_default = kmp_sched_static, // default scheduling
347 kmp_sched_monotonic = 0x80000000
348} kmp_sched_t;
349#endif
350
355enum sched_type : kmp_int32 {
357 kmp_sch_static_chunked = 33,
359 kmp_sch_dynamic_chunked = 35,
361 kmp_sch_runtime = 37,
363 kmp_sch_trapezoidal = 39,
364
365 /* accessible only through KMP_SCHEDULE environment variable */
366 kmp_sch_static_greedy = 40,
367 kmp_sch_static_balanced = 41,
368 /* accessible only through KMP_SCHEDULE environment variable */
369 kmp_sch_guided_iterative_chunked = 42,
370 kmp_sch_guided_analytical_chunked = 43,
371 /* accessible only through KMP_SCHEDULE environment variable */
372 kmp_sch_static_steal = 44,
373
374 /* static with chunk adjustment (e.g., simd) */
375 kmp_sch_static_balanced_chunked = 45,
379 /* accessible only through KMP_SCHEDULE environment variable */
383 kmp_ord_static_chunked = 65,
385 kmp_ord_dynamic_chunked = 67,
386 kmp_ord_guided_chunked = 68,
387 kmp_ord_runtime = 69,
389 kmp_ord_trapezoidal = 71,
392 /* Schedules for Distribute construct */
396 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
397 single iteration/chunk, even if the loop is serialized. For the schedule
398 types listed above, the entire iteration vector is returned if the loop is
399 serialized. This doesn't work for gcc/gcomp sections. */
402 kmp_nm_static_chunked =
403 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
405 kmp_nm_dynamic_chunked = 163,
407 kmp_nm_runtime = 165,
409 kmp_nm_trapezoidal = 167,
410
411 /* accessible only through KMP_SCHEDULE environment variable */
412 kmp_nm_static_greedy = 168,
413 kmp_nm_static_balanced = 169,
414 /* accessible only through KMP_SCHEDULE environment variable */
415 kmp_nm_guided_iterative_chunked = 170,
416 kmp_nm_guided_analytical_chunked = 171,
417 kmp_nm_static_steal =
418 172, /* accessible only through OMP_SCHEDULE environment variable */
419
420 kmp_nm_ord_static_chunked = 193,
422 kmp_nm_ord_dynamic_chunked = 195,
423 kmp_nm_ord_guided_chunked = 196,
424 kmp_nm_ord_runtime = 197,
426 kmp_nm_ord_trapezoidal = 199,
429 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
430 we need to distinguish the three possible cases (no modifier, monotonic
431 modifier, nonmonotonic modifier), we need separate bits for each modifier.
432 The absence of monotonic does not imply nonmonotonic, especially since 4.5
433 says that the behaviour of the "no modifier" case is implementation defined
434 in 4.5, but will become "nonmonotonic" in 5.0.
435
436 Since we're passing a full 32 bit value, we can use a couple of high bits
437 for these flags; out of paranoia we avoid the sign bit.
438
439 These modifiers can be or-ed into non-static schedules by the compiler to
440 pass the additional information. They will be stripped early in the
441 processing in __kmp_dispatch_init when setting up schedules, so most of the
442 code won't ever see schedules with these bits set. */
444 (1 << 29),
446 (1 << 30),
448#define SCHEDULE_WITHOUT_MODIFIERS(s) \
449 (enum sched_type)( \
451#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
452#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
453#define SCHEDULE_HAS_NO_MODIFIERS(s) \
454 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
455#define SCHEDULE_GET_MODIFIERS(s) \
456 ((enum sched_type)( \
457 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
458#define SCHEDULE_SET_MODIFIERS(s, m) \
459 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
460#define SCHEDULE_NONMONOTONIC 0
461#define SCHEDULE_MONOTONIC 1
462
465
466// Apply modifiers on internal kind to standard kind
467static inline void
468__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
469 enum sched_type internal_kind) {
470 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
471 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
472 }
473}
474
475// Apply modifiers on standard kind to internal kind
476static inline void
477__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
478 enum sched_type *internal_kind) {
479 if ((int)kind & (int)kmp_sched_monotonic) {
480 *internal_kind = (enum sched_type)((int)*internal_kind |
482 }
483}
484
485// Get standard schedule without modifiers
486static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
487 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
488}
489
490/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
491typedef union kmp_r_sched {
492 struct {
493 enum sched_type r_sched_type;
494 int chunk;
495 };
496 kmp_int64 sched;
497} kmp_r_sched_t;
498
499extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
500// internal schedule types
501
502enum library_type {
503 library_none,
504 library_serial,
505 library_turnaround,
506 library_throughput
507};
508
509#if KMP_OS_LINUX
510enum clock_function_type {
511 clock_function_gettimeofday,
512 clock_function_clock_gettime
513};
514#endif /* KMP_OS_LINUX */
515
516#if KMP_MIC_SUPPORTED
517enum mic_type { non_mic, mic1, mic2, mic3, dummy };
518#endif
519
520/* -- fast reduction stuff ------------------------------------------------ */
521
522#undef KMP_FAST_REDUCTION_BARRIER
523#define KMP_FAST_REDUCTION_BARRIER 1
524
525#undef KMP_FAST_REDUCTION_CORE_DUO
526#if KMP_ARCH_X86 || KMP_ARCH_X86_64
527#define KMP_FAST_REDUCTION_CORE_DUO 1
528#endif
529
530enum _reduction_method {
531 reduction_method_not_defined = 0,
532 critical_reduce_block = (1 << 8),
533 atomic_reduce_block = (2 << 8),
534 tree_reduce_block = (3 << 8),
535 empty_reduce_block = (4 << 8)
536};
537
538// Description of the packed_reduction_method variable:
539// The packed_reduction_method variable consists of two enum types variables
540// that are packed together into 0-th byte and 1-st byte:
541// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
542// barrier that will be used in fast reduction: bs_plain_barrier or
543// bs_reduction_barrier
544// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
545// be used in fast reduction;
546// Reduction method is of 'enum _reduction_method' type and it's defined the way
547// so that the bits of 0-th byte are empty, so no need to execute a shift
548// instruction while packing/unpacking
549
550#if KMP_FAST_REDUCTION_BARRIER
551#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
552 ((reduction_method) | (barrier_type))
553
554#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
555 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
556
557#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
558 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
559#else
560#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
561 (reduction_method)
562
563#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
564 (packed_reduction_method)
565
566#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
567#endif
568
569#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
570 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
571 (which_reduction_block))
572
573#if KMP_FAST_REDUCTION_BARRIER
574#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
575 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
576
577#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
578 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
579#endif
580
581typedef int PACKED_REDUCTION_METHOD_T;
582
583/* -- end of fast reduction stuff ----------------------------------------- */
584
585#if KMP_OS_WINDOWS
586#define USE_CBLKDATA
587#if KMP_MSVC_COMPAT
588#pragma warning(push)
589#pragma warning(disable : 271 310)
590#endif
591#include <windows.h>
592#if KMP_MSVC_COMPAT
593#pragma warning(pop)
594#endif
595#endif
596
597#if KMP_OS_UNIX
598#include <dlfcn.h>
599#include <pthread.h>
600#endif
601
602enum kmp_hw_t : int {
603 KMP_HW_UNKNOWN = -1,
604 KMP_HW_SOCKET = 0,
605 KMP_HW_PROC_GROUP,
606 KMP_HW_NUMA,
607 KMP_HW_DIE,
608 KMP_HW_LLC,
609 KMP_HW_L3,
610 KMP_HW_TILE,
611 KMP_HW_MODULE,
612 KMP_HW_L2,
613 KMP_HW_L1,
614 KMP_HW_CORE,
615 KMP_HW_THREAD,
616 KMP_HW_LAST
617};
618
619#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
620 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
621#define KMP_ASSERT_VALID_HW_TYPE(type) \
622 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
623
624#define KMP_FOREACH_HW_TYPE(type) \
625 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
626 type = (kmp_hw_t)((int)type + 1))
627
628const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
629const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
630
631/* Only Linux* OS and Windows* OS support thread affinity. */
632#if KMP_AFFINITY_SUPPORTED
633
634// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
635#if KMP_OS_WINDOWS
636#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
637typedef struct GROUP_AFFINITY {
638 KAFFINITY Mask;
639 WORD Group;
640 WORD Reserved[3];
641} GROUP_AFFINITY;
642#endif /* _MSC_VER < 1600 */
643#if KMP_GROUP_AFFINITY
644extern int __kmp_num_proc_groups;
645#else
646static const int __kmp_num_proc_groups = 1;
647#endif /* KMP_GROUP_AFFINITY */
648typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
649extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
650
651typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
652extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
653
654typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
655extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
656
657typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
658 GROUP_AFFINITY *);
659extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
660#endif /* KMP_OS_WINDOWS */
661
662#if KMP_USE_HWLOC
663extern hwloc_topology_t __kmp_hwloc_topology;
664extern int __kmp_hwloc_error;
665#endif
666
667extern size_t __kmp_affin_mask_size;
668#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
669#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
670#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
671#define KMP_CPU_SET_ITERATE(i, mask) \
672 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
673#define KMP_CPU_SET(i, mask) (mask)->set(i)
674#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
675#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
676#define KMP_CPU_ZERO(mask) (mask)->zero()
677#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
678#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
679#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
680#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
681#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
682#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
683#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
684#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
685#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
686#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
687#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
688#define KMP_CPU_ALLOC_ARRAY(arr, n) \
689 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
690#define KMP_CPU_FREE_ARRAY(arr, n) \
691 __kmp_affinity_dispatch->deallocate_mask_array(arr)
692#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
693#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
694#define __kmp_get_system_affinity(mask, abort_bool) \
695 (mask)->get_system_affinity(abort_bool)
696#define __kmp_set_system_affinity(mask, abort_bool) \
697 (mask)->set_system_affinity(abort_bool)
698#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
699
700class KMPAffinity {
701public:
702 class Mask {
703 public:
704 void *operator new(size_t n);
705 void operator delete(void *p);
706 void *operator new[](size_t n);
707 void operator delete[](void *p);
708 virtual ~Mask() {}
709 // Set bit i to 1
710 virtual void set(int i) {}
711 // Return bit i
712 virtual bool is_set(int i) const { return false; }
713 // Set bit i to 0
714 virtual void clear(int i) {}
715 // Zero out entire mask
716 virtual void zero() {}
717 // Copy src into this mask
718 virtual void copy(const Mask *src) {}
719 // this &= rhs
720 virtual void bitwise_and(const Mask *rhs) {}
721 // this |= rhs
722 virtual void bitwise_or(const Mask *rhs) {}
723 // this = ~this
724 virtual void bitwise_not() {}
725 // API for iterating over an affinity mask
726 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
727 virtual int begin() const { return 0; }
728 virtual int end() const { return 0; }
729 virtual int next(int previous) const { return 0; }
730#if KMP_OS_WINDOWS
731 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
732#endif
733 // Set the system's affinity to this affinity mask's value
734 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
735 // Set this affinity mask to the current system affinity
736 virtual int get_system_affinity(bool abort_on_error) { return -1; }
737 // Only 1 DWORD in the mask should have any procs set.
738 // Return the appropriate index, or -1 for an invalid mask.
739 virtual int get_proc_group() const { return -1; }
740 };
741 void *operator new(size_t n);
742 void operator delete(void *p);
743 // Need virtual destructor
744 virtual ~KMPAffinity() = default;
745 // Determine if affinity is capable
746 virtual void determine_capable(const char *env_var) {}
747 // Bind the current thread to os proc
748 virtual void bind_thread(int proc) {}
749 // Factory functions to allocate/deallocate a mask
750 virtual Mask *allocate_mask() { return nullptr; }
751 virtual void deallocate_mask(Mask *m) {}
752 virtual Mask *allocate_mask_array(int num) { return nullptr; }
753 virtual void deallocate_mask_array(Mask *m) {}
754 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
755 static void pick_api();
756 static void destroy_api();
757 enum api_type {
758 NATIVE_OS
759#if KMP_USE_HWLOC
760 ,
761 HWLOC
762#endif
763 };
764 virtual api_type get_api_type() const {
765 KMP_ASSERT(0);
766 return NATIVE_OS;
767 }
768
769private:
770 static bool picked_api;
771};
772
773typedef KMPAffinity::Mask kmp_affin_mask_t;
774extern KMPAffinity *__kmp_affinity_dispatch;
775
776// Declare local char buffers with this size for printing debug and info
777// messages, using __kmp_affinity_print_mask().
778#define KMP_AFFIN_MASK_PRINT_LEN 1024
779
780enum affinity_type {
781 affinity_none = 0,
782 affinity_physical,
783 affinity_logical,
784 affinity_compact,
785 affinity_scatter,
786 affinity_explicit,
787 affinity_balanced,
788 affinity_disabled, // not used outsize the env var parser
789 affinity_default
790};
791
792enum affinity_top_method {
793 affinity_top_method_all = 0, // try all (supported) methods, in order
794#if KMP_ARCH_X86 || KMP_ARCH_X86_64
795 affinity_top_method_apicid,
796 affinity_top_method_x2apicid,
797 affinity_top_method_x2apicid_1f,
798#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
799 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
800#if KMP_GROUP_AFFINITY
801 affinity_top_method_group,
802#endif /* KMP_GROUP_AFFINITY */
803 affinity_top_method_flat,
804#if KMP_USE_HWLOC
805 affinity_top_method_hwloc,
806#endif
807 affinity_top_method_default
808};
809
810#define affinity_respect_mask_default (-1)
811
812extern enum affinity_type __kmp_affinity_type; /* Affinity type */
813extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
814extern int __kmp_affinity_gran_levels; /* corresponding int value */
815extern int __kmp_affinity_dups; /* Affinity duplicate masks */
816extern enum affinity_top_method __kmp_affinity_top_method;
817extern int __kmp_affinity_compact; /* Affinity 'compact' value */
818extern int __kmp_affinity_offset; /* Affinity offset value */
819extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
820extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
821extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
822extern char *__kmp_affinity_proclist; /* proc ID list */
823extern kmp_affin_mask_t *__kmp_affinity_masks;
824extern unsigned __kmp_affinity_num_masks;
825extern void __kmp_affinity_bind_thread(int which);
826
827extern kmp_affin_mask_t *__kmp_affin_fullMask;
828extern char *__kmp_cpuinfo_file;
829
830#endif /* KMP_AFFINITY_SUPPORTED */
831
832// This needs to be kept in sync with the values in omp.h !!!
833typedef enum kmp_proc_bind_t {
834 proc_bind_false = 0,
835 proc_bind_true,
836 proc_bind_primary,
837 proc_bind_close,
838 proc_bind_spread,
839 proc_bind_intel, // use KMP_AFFINITY interface
840 proc_bind_default
841} kmp_proc_bind_t;
842
843typedef struct kmp_nested_proc_bind_t {
844 kmp_proc_bind_t *bind_types;
845 int size;
846 int used;
847} kmp_nested_proc_bind_t;
848
849extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
850
851extern int __kmp_display_affinity;
852extern char *__kmp_affinity_format;
853static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
854#if OMPT_SUPPORT
855extern int __kmp_tool;
856extern char *__kmp_tool_libraries;
857#endif // OMPT_SUPPORT
858
859#if KMP_AFFINITY_SUPPORTED
860#define KMP_PLACE_ALL (-1)
861#define KMP_PLACE_UNDEFINED (-2)
862// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
863#define KMP_AFFINITY_NON_PROC_BIND \
864 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
865 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
866 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
867#endif /* KMP_AFFINITY_SUPPORTED */
868
869extern int __kmp_affinity_num_places;
870
871typedef enum kmp_cancel_kind_t {
872 cancel_noreq = 0,
873 cancel_parallel = 1,
874 cancel_loop = 2,
875 cancel_sections = 3,
876 cancel_taskgroup = 4
877} kmp_cancel_kind_t;
878
879// KMP_HW_SUBSET support:
880typedef struct kmp_hws_item {
881 int num;
882 int offset;
883} kmp_hws_item_t;
884
885extern kmp_hws_item_t __kmp_hws_socket;
886extern kmp_hws_item_t __kmp_hws_die;
887extern kmp_hws_item_t __kmp_hws_node;
888extern kmp_hws_item_t __kmp_hws_tile;
889extern kmp_hws_item_t __kmp_hws_core;
890extern kmp_hws_item_t __kmp_hws_proc;
891extern int __kmp_hws_requested;
892extern int __kmp_hws_abs_flag; // absolute or per-item number requested
893
894/* ------------------------------------------------------------------------ */
895
896#define KMP_PAD(type, sz) \
897 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
898
899// We need to avoid using -1 as a GTID as +1 is added to the gtid
900// when storing it in a lock, and the value 0 is reserved.
901#define KMP_GTID_DNE (-2) /* Does not exist */
902#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
903#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
904#define KMP_GTID_UNKNOWN (-5) /* Is not known */
905#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
906
907/* OpenMP 5.0 Memory Management support */
908
909#ifndef __OMP_H
910// Duplicate type definitions from omp.h
911typedef uintptr_t omp_uintptr_t;
912
913typedef enum {
914 omp_atk_sync_hint = 1,
915 omp_atk_alignment = 2,
916 omp_atk_access = 3,
917 omp_atk_pool_size = 4,
918 omp_atk_fallback = 5,
919 omp_atk_fb_data = 6,
920 omp_atk_pinned = 7,
921 omp_atk_partition = 8
922} omp_alloctrait_key_t;
923
924typedef enum {
925 omp_atv_false = 0,
926 omp_atv_true = 1,
927 omp_atv_contended = 3,
928 omp_atv_uncontended = 4,
929 omp_atv_serialized = 5,
930 omp_atv_sequential = omp_atv_serialized, // (deprecated)
931 omp_atv_private = 6,
932 omp_atv_all = 7,
933 omp_atv_thread = 8,
934 omp_atv_pteam = 9,
935 omp_atv_cgroup = 10,
936 omp_atv_default_mem_fb = 11,
937 omp_atv_null_fb = 12,
938 omp_atv_abort_fb = 13,
939 omp_atv_allocator_fb = 14,
940 omp_atv_environment = 15,
941 omp_atv_nearest = 16,
942 omp_atv_blocked = 17,
943 omp_atv_interleaved = 18
944} omp_alloctrait_value_t;
945#define omp_atv_default ((omp_uintptr_t)-1)
946
947typedef void *omp_memspace_handle_t;
948extern omp_memspace_handle_t const omp_default_mem_space;
949extern omp_memspace_handle_t const omp_large_cap_mem_space;
950extern omp_memspace_handle_t const omp_const_mem_space;
951extern omp_memspace_handle_t const omp_high_bw_mem_space;
952extern omp_memspace_handle_t const omp_low_lat_mem_space;
953// Preview of target memory support
954extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
955extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
956extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
957
958typedef struct {
959 omp_alloctrait_key_t key;
960 omp_uintptr_t value;
961} omp_alloctrait_t;
962
963typedef void *omp_allocator_handle_t;
964extern omp_allocator_handle_t const omp_null_allocator;
965extern omp_allocator_handle_t const omp_default_mem_alloc;
966extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
967extern omp_allocator_handle_t const omp_const_mem_alloc;
968extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
969extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
970extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
971extern omp_allocator_handle_t const omp_pteam_mem_alloc;
972extern omp_allocator_handle_t const omp_thread_mem_alloc;
973// Preview of target memory support
974extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
975extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
976extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
977extern omp_allocator_handle_t const kmp_max_mem_alloc;
978extern omp_allocator_handle_t __kmp_def_allocator;
979
980// end of duplicate type definitions from omp.h
981#endif
982
983extern int __kmp_memkind_available;
984
985typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
986
987typedef struct kmp_allocator_t {
988 omp_memspace_handle_t memspace;
989 void **memkind; // pointer to memkind
990 int alignment;
991 omp_alloctrait_value_t fb;
992 kmp_allocator_t *fb_data;
993 kmp_uint64 pool_size;
994 kmp_uint64 pool_used;
995} kmp_allocator_t;
996
997extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
998 omp_memspace_handle_t,
999 int ntraits,
1000 omp_alloctrait_t traits[]);
1001extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1002extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1003extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1004extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1005extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1006 omp_allocator_handle_t al);
1007extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1008 omp_allocator_handle_t al,
1009 omp_allocator_handle_t free_al);
1010extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1011
1012extern void __kmp_init_memkind();
1013extern void __kmp_fini_memkind();
1014extern void __kmp_init_target_mem();
1015
1016/* ------------------------------------------------------------------------ */
1017
1018#define KMP_UINT64_MAX \
1019 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1020
1021#define KMP_MIN_NTH 1
1022
1023#ifndef KMP_MAX_NTH
1024#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1025#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1026#else
1027#define KMP_MAX_NTH INT_MAX
1028#endif
1029#endif /* KMP_MAX_NTH */
1030
1031#ifdef PTHREAD_STACK_MIN
1032#define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1033#else
1034#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1035#endif
1036
1037#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1038
1039#if KMP_ARCH_X86
1040#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1041#elif KMP_ARCH_X86_64
1042#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1043#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1044#else
1045#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1046#endif
1047
1048#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1049#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1050#define KMP_MAX_MALLOC_POOL_INCR \
1051 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1052
1053#define KMP_MIN_STKOFFSET (0)
1054#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1055#if KMP_OS_DARWIN
1056#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1057#else
1058#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1059#endif
1060
1061#define KMP_MIN_STKPADDING (0)
1062#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1063
1064#define KMP_BLOCKTIME_MULTIPLIER \
1065 (1000) /* number of blocktime units per second */
1066#define KMP_MIN_BLOCKTIME (0)
1067#define KMP_MAX_BLOCKTIME \
1068 (INT_MAX) /* Must be this for "infinite" setting the work */
1069#define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
1070
1071#if KMP_USE_MONITOR
1072#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1073#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1074#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1075
1076/* Calculate new number of monitor wakeups for a specific block time based on
1077 previous monitor_wakeups. Only allow increasing number of wakeups */
1078#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1079 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1080 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1081 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1082 ? (monitor_wakeups) \
1083 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1084
1085/* Calculate number of intervals for a specific block time based on
1086 monitor_wakeups */
1087#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1088 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1089 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1090#else
1091#define KMP_BLOCKTIME(team, tid) \
1092 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1093#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1094// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1095extern kmp_uint64 __kmp_ticks_per_msec;
1096#if KMP_COMPILER_ICC
1097#define KMP_NOW() ((kmp_uint64)_rdtsc())
1098#else
1099#define KMP_NOW() __kmp_hardware_timestamp()
1100#endif
1101#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1102#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1103 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1104#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1105#else
1106// System time is retrieved sporadically while blocking.
1107extern kmp_uint64 __kmp_now_nsec();
1108#define KMP_NOW() __kmp_now_nsec()
1109#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1110#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1111 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1112#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1113#endif
1114#endif // KMP_USE_MONITOR
1115
1116#define KMP_MIN_STATSCOLS 40
1117#define KMP_MAX_STATSCOLS 4096
1118#define KMP_DEFAULT_STATSCOLS 80
1119
1120#define KMP_MIN_INTERVAL 0
1121#define KMP_MAX_INTERVAL (INT_MAX - 1)
1122#define KMP_DEFAULT_INTERVAL 0
1123
1124#define KMP_MIN_CHUNK 1
1125#define KMP_MAX_CHUNK (INT_MAX - 1)
1126#define KMP_DEFAULT_CHUNK 1
1127
1128#define KMP_MIN_DISP_NUM_BUFF 1
1129#define KMP_DFLT_DISP_NUM_BUFF 7
1130#define KMP_MAX_DISP_NUM_BUFF 4096
1131
1132#define KMP_MAX_ORDERED 8
1133
1134#define KMP_MAX_FIELDS 32
1135
1136#define KMP_MAX_BRANCH_BITS 31
1137
1138#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1139
1140#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1141
1142#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1143
1144/* Minimum number of threads before switch to TLS gtid (experimentally
1145 determined) */
1146/* josh TODO: what about OS X* tuning? */
1147#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1148#define KMP_TLS_GTID_MIN 5
1149#else
1150#define KMP_TLS_GTID_MIN INT_MAX
1151#endif
1152
1153#define KMP_MASTER_TID(tid) (0 == (tid))
1154#define KMP_WORKER_TID(tid) (0 != (tid))
1155
1156#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1157#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1158#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1159
1160#ifndef TRUE
1161#define FALSE 0
1162#define TRUE (!FALSE)
1163#endif
1164
1165/* NOTE: all of the following constants must be even */
1166
1167#if KMP_OS_WINDOWS
1168#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1169#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1170#elif KMP_OS_LINUX
1171#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1172#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1173#elif KMP_OS_DARWIN
1174/* TODO: tune for KMP_OS_DARWIN */
1175#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1176#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1177#elif KMP_OS_DRAGONFLY
1178/* TODO: tune for KMP_OS_DRAGONFLY */
1179#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1180#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1181#elif KMP_OS_FREEBSD
1182/* TODO: tune for KMP_OS_FREEBSD */
1183#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1184#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1185#elif KMP_OS_NETBSD
1186/* TODO: tune for KMP_OS_NETBSD */
1187#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1188#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1189#elif KMP_OS_HURD
1190/* TODO: tune for KMP_OS_HURD */
1191#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1192#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1193#elif KMP_OS_OPENBSD
1194/* TODO: tune for KMP_OS_OPENBSD */
1195#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1196#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1197#endif
1198
1199#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1200typedef struct kmp_cpuid {
1201 kmp_uint32 eax;
1202 kmp_uint32 ebx;
1203 kmp_uint32 ecx;
1204 kmp_uint32 edx;
1205} kmp_cpuid_t;
1206
1207typedef struct kmp_cpuinfo {
1208 int initialized; // If 0, other fields are not initialized.
1209 int signature; // CPUID(1).EAX
1210 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1211 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1212 // Model << 4 ) + Model)
1213 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1214 int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1215 int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1216 int apic_id;
1217 int physical_id;
1218 int logical_id;
1219 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1220 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1221} kmp_cpuinfo_t;
1222
1223extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1224
1225#if KMP_OS_UNIX
1226// subleaf is only needed for cache and topology discovery and can be set to
1227// zero in most cases
1228static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1229 __asm__ __volatile__("cpuid"
1230 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1231 : "a"(leaf), "c"(subleaf));
1232}
1233// Load p into FPU control word
1234static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1235 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1236}
1237// Store FPU control word into p
1238static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1239 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1240}
1241static inline void __kmp_clear_x87_fpu_status_word() {
1242#if KMP_MIC
1243 // 32-bit protected mode x87 FPU state
1244 struct x87_fpu_state {
1245 unsigned cw;
1246 unsigned sw;
1247 unsigned tw;
1248 unsigned fip;
1249 unsigned fips;
1250 unsigned fdp;
1251 unsigned fds;
1252 };
1253 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1254 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1255 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1256 "fldenv %0\n\t" // load FP env back
1257 : "+m"(fpu_state), "+m"(fpu_state.sw));
1258#else
1259 __asm__ __volatile__("fnclex");
1260#endif // KMP_MIC
1261}
1262#if __SSE__
1263static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1264static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1265#else
1266static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1267static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1268#endif
1269#else
1270// Windows still has these as external functions in assembly file
1271extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1272extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1273extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1274extern void __kmp_clear_x87_fpu_status_word();
1275static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1276static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1277#endif // KMP_OS_UNIX
1278
1279#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1280
1281#if KMP_ARCH_X86
1282extern void __kmp_x86_pause(void);
1283#elif KMP_MIC
1284// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1285// regression after removal of extra PAUSE from spin loops. Changing
1286// the delay from 100 to 300 showed even better performance than double PAUSE
1287// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1288static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1289#else
1290static inline void __kmp_x86_pause(void) { _mm_pause(); }
1291#endif
1292#define KMP_CPU_PAUSE() __kmp_x86_pause()
1293#elif KMP_ARCH_PPC64
1294#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1295#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1296#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1297#define KMP_CPU_PAUSE() \
1298 do { \
1299 KMP_PPC64_PRI_LOW(); \
1300 KMP_PPC64_PRI_MED(); \
1301 KMP_PPC64_PRI_LOC_MB(); \
1302 } while (0)
1303#else
1304#define KMP_CPU_PAUSE() /* nothing to do */
1305#endif
1306
1307#define KMP_INIT_YIELD(count) \
1308 { (count) = __kmp_yield_init; }
1309
1310#define KMP_OVERSUBSCRIBED \
1311 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1312
1313#define KMP_TRY_YIELD \
1314 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1315
1316#define KMP_TRY_YIELD_OVERSUB \
1317 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1318
1319#define KMP_YIELD(cond) \
1320 { \
1321 KMP_CPU_PAUSE(); \
1322 if ((cond) && (KMP_TRY_YIELD)) \
1323 __kmp_yield(); \
1324 }
1325
1326#define KMP_YIELD_OVERSUB() \
1327 { \
1328 KMP_CPU_PAUSE(); \
1329 if ((KMP_TRY_YIELD_OVERSUB)) \
1330 __kmp_yield(); \
1331 }
1332
1333// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1334// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1335#define KMP_YIELD_SPIN(count) \
1336 { \
1337 KMP_CPU_PAUSE(); \
1338 if (KMP_TRY_YIELD) { \
1339 (count) -= 2; \
1340 if (!(count)) { \
1341 __kmp_yield(); \
1342 (count) = __kmp_yield_next; \
1343 } \
1344 } \
1345 }
1346
1347#define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1348 { \
1349 KMP_CPU_PAUSE(); \
1350 if ((KMP_TRY_YIELD_OVERSUB)) \
1351 __kmp_yield(); \
1352 else if (__kmp_use_yield == 1) { \
1353 (count) -= 2; \
1354 if (!(count)) { \
1355 __kmp_yield(); \
1356 (count) = __kmp_yield_next; \
1357 } \
1358 } \
1359 }
1360
1361// User-level Monitor/Mwait
1362#if KMP_HAVE_UMWAIT
1363// We always try for UMWAIT first
1364#if KMP_HAVE_WAITPKG_INTRINSICS
1365#if KMP_HAVE_IMMINTRIN_H
1366#include <immintrin.h>
1367#elif KMP_HAVE_INTRIN_H
1368#include <intrin.h>
1369#endif
1370#endif // KMP_HAVE_WAITPKG_INTRINSICS
1371KMP_ATTRIBUTE_TARGET_WAITPKG
1372static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1373#if !KMP_HAVE_WAITPKG_INTRINSICS
1374 uint32_t timeHi = uint32_t(counter >> 32);
1375 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1376 char flag;
1377 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1378 "setb %0"
1379 : "=r"(flag)
1380 : "a"(timeLo), "d"(timeHi), "c"(hint)
1381 :);
1382 return flag;
1383#else
1384 return _tpause(hint, counter);
1385#endif
1386}
1387KMP_ATTRIBUTE_TARGET_WAITPKG
1388static inline void __kmp_umonitor(void *cacheline) {
1389#if !KMP_HAVE_WAITPKG_INTRINSICS
1390 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1391 :
1392 : "a"(cacheline)
1393 :);
1394#else
1395 _umonitor(cacheline);
1396#endif
1397}
1398KMP_ATTRIBUTE_TARGET_WAITPKG
1399static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1400#if !KMP_HAVE_WAITPKG_INTRINSICS
1401 uint32_t timeHi = uint32_t(counter >> 32);
1402 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1403 char flag;
1404 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1405 "setb %0"
1406 : "=r"(flag)
1407 : "a"(timeLo), "d"(timeHi), "c"(hint)
1408 :);
1409 return flag;
1410#else
1411 return _umwait(hint, counter);
1412#endif
1413}
1414#elif KMP_HAVE_MWAIT
1415#if KMP_OS_UNIX
1416#include <pmmintrin.h>
1417#else
1418#include <intrin.h>
1419#endif
1420#if KMP_OS_UNIX
1421__attribute__((target("sse3")))
1422#endif
1423static inline void
1424__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1425 _mm_monitor(cacheline, extensions, hints);
1426}
1427#if KMP_OS_UNIX
1428__attribute__((target("sse3")))
1429#endif
1430static inline void
1431__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1432 _mm_mwait(extensions, hints);
1433}
1434#endif // KMP_HAVE_UMWAIT
1435
1436/* ------------------------------------------------------------------------ */
1437/* Support datatypes for the orphaned construct nesting checks. */
1438/* ------------------------------------------------------------------------ */
1439
1440enum cons_type {
1441 ct_none,
1442 ct_parallel,
1443 ct_pdo,
1444 ct_pdo_ordered,
1445 ct_psections,
1446 ct_psingle,
1447 ct_critical,
1448 ct_ordered_in_parallel,
1449 ct_ordered_in_pdo,
1450 ct_master,
1451 ct_reduce,
1452 ct_barrier,
1453 ct_masked
1454};
1455
1456#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1457
1458struct cons_data {
1459 ident_t const *ident;
1460 enum cons_type type;
1461 int prev;
1462 kmp_user_lock_p
1463 name; /* address exclusively for critical section name comparison */
1464};
1465
1466struct cons_header {
1467 int p_top, w_top, s_top;
1468 int stack_size, stack_top;
1469 struct cons_data *stack_data;
1470};
1471
1472struct kmp_region_info {
1473 char *text;
1474 int offset[KMP_MAX_FIELDS];
1475 int length[KMP_MAX_FIELDS];
1476};
1477
1478/* ---------------------------------------------------------------------- */
1479/* ---------------------------------------------------------------------- */
1480
1481#if KMP_OS_WINDOWS
1482typedef HANDLE kmp_thread_t;
1483typedef DWORD kmp_key_t;
1484#endif /* KMP_OS_WINDOWS */
1485
1486#if KMP_OS_UNIX
1487typedef pthread_t kmp_thread_t;
1488typedef pthread_key_t kmp_key_t;
1489#endif
1490
1491extern kmp_key_t __kmp_gtid_threadprivate_key;
1492
1493typedef struct kmp_sys_info {
1494 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1495 long minflt; /* the number of page faults serviced without any I/O */
1496 long majflt; /* the number of page faults serviced that required I/O */
1497 long nswap; /* the number of times a process was "swapped" out of memory */
1498 long inblock; /* the number of times the file system had to perform input */
1499 long oublock; /* the number of times the file system had to perform output */
1500 long nvcsw; /* the number of times a context switch was voluntarily */
1501 long nivcsw; /* the number of times a context switch was forced */
1502} kmp_sys_info_t;
1503
1504#if USE_ITT_BUILD
1505// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1506// required type here. Later we will check the type meets requirements.
1507typedef int kmp_itt_mark_t;
1508#define KMP_ITT_DEBUG 0
1509#endif /* USE_ITT_BUILD */
1510
1511typedef kmp_int32 kmp_critical_name[8];
1512
1522typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1523typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1524 ...);
1525
1530/* ---------------------------------------------------------------------------
1531 */
1532/* Threadprivate initialization/finalization function declarations */
1533
1534/* for non-array objects: __kmpc_threadprivate_register() */
1535
1540typedef void *(*kmpc_ctor)(void *);
1541
1546typedef void (*kmpc_dtor)(
1547 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1548 compiler */
1553typedef void *(*kmpc_cctor)(void *, void *);
1554
1555/* for array objects: __kmpc_threadprivate_register_vec() */
1556/* First arg: "this" pointer */
1557/* Last arg: number of array elements */
1563typedef void *(*kmpc_ctor_vec)(void *, size_t);
1569typedef void (*kmpc_dtor_vec)(void *, size_t);
1575typedef void *(*kmpc_cctor_vec)(void *, void *,
1576 size_t); /* function unused by compiler */
1577
1582/* keeps tracked of threadprivate cache allocations for cleanup later */
1583typedef struct kmp_cached_addr {
1584 void **addr; /* address of allocated cache */
1585 void ***compiler_cache; /* pointer to compiler's cache */
1586 void *data; /* pointer to global data */
1587 struct kmp_cached_addr *next; /* pointer to next cached address */
1588} kmp_cached_addr_t;
1589
1590struct private_data {
1591 struct private_data *next; /* The next descriptor in the list */
1592 void *data; /* The data buffer for this descriptor */
1593 int more; /* The repeat count for this descriptor */
1594 size_t size; /* The data size for this descriptor */
1595};
1596
1597struct private_common {
1598 struct private_common *next;
1599 struct private_common *link;
1600 void *gbl_addr;
1601 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1602 size_t cmn_size;
1603};
1604
1605struct shared_common {
1606 struct shared_common *next;
1607 struct private_data *pod_init;
1608 void *obj_init;
1609 void *gbl_addr;
1610 union {
1611 kmpc_ctor ctor;
1612 kmpc_ctor_vec ctorv;
1613 } ct;
1614 union {
1615 kmpc_cctor cctor;
1616 kmpc_cctor_vec cctorv;
1617 } cct;
1618 union {
1619 kmpc_dtor dtor;
1620 kmpc_dtor_vec dtorv;
1621 } dt;
1622 size_t vec_len;
1623 int is_vec;
1624 size_t cmn_size;
1625};
1626
1627#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1628#define KMP_HASH_TABLE_SIZE \
1629 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1630#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1631#define KMP_HASH(x) \
1632 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1633
1634struct common_table {
1635 struct private_common *data[KMP_HASH_TABLE_SIZE];
1636};
1637
1638struct shared_table {
1639 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1640};
1641
1642/* ------------------------------------------------------------------------ */
1643
1644#if KMP_USE_HIER_SCHED
1645// Shared barrier data that exists inside a single unit of the scheduling
1646// hierarchy
1647typedef struct kmp_hier_private_bdata_t {
1648 kmp_int32 num_active;
1649 kmp_uint64 index;
1650 kmp_uint64 wait_val[2];
1651} kmp_hier_private_bdata_t;
1652#endif
1653
1654typedef struct kmp_sched_flags {
1655 unsigned ordered : 1;
1656 unsigned nomerge : 1;
1657 unsigned contains_last : 1;
1658#if KMP_USE_HIER_SCHED
1659 unsigned use_hier : 1;
1660 unsigned unused : 28;
1661#else
1662 unsigned unused : 29;
1663#endif
1664} kmp_sched_flags_t;
1665
1666KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1667
1668#if KMP_STATIC_STEAL_ENABLED
1669typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1670 kmp_int32 count;
1671 kmp_int32 ub;
1672 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1673 kmp_int32 lb;
1674 kmp_int32 st;
1675 kmp_int32 tc;
1676 kmp_lock_t *steal_lock; // lock used for chunk stealing
1677 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1678 // a) parm3 is properly aligned and
1679 // b) all parm1-4 are on the same cache line.
1680 // Because of parm1-4 are used together, performance seems to be better
1681 // if they are on the same cache line (not measured though).
1682
1683 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1684 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1685 kmp_int32 parm2; // make no real change at least while padding is off.
1686 kmp_int32 parm3;
1687 kmp_int32 parm4;
1688 };
1689
1690 kmp_uint32 ordered_lower;
1691 kmp_uint32 ordered_upper;
1692#if KMP_OS_WINDOWS
1693 kmp_int32 last_upper;
1694#endif /* KMP_OS_WINDOWS */
1695} dispatch_private_info32_t;
1696
1697typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1698 kmp_int64 count; // current chunk number for static & static-steal scheduling
1699 kmp_int64 ub; /* upper-bound */
1700 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1701 kmp_int64 lb; /* lower-bound */
1702 kmp_int64 st; /* stride */
1703 kmp_int64 tc; /* trip count (number of iterations) */
1704 kmp_lock_t *steal_lock; // lock used for chunk stealing
1705 /* parm[1-4] are used in different ways by different scheduling algorithms */
1706
1707 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1708 // a) parm3 is properly aligned and
1709 // b) all parm1-4 are in the same cache line.
1710 // Because of parm1-4 are used together, performance seems to be better
1711 // if they are in the same line (not measured though).
1712
1713 struct KMP_ALIGN(32) {
1714 kmp_int64 parm1;
1715 kmp_int64 parm2;
1716 kmp_int64 parm3;
1717 kmp_int64 parm4;
1718 };
1719
1720 kmp_uint64 ordered_lower;
1721 kmp_uint64 ordered_upper;
1722#if KMP_OS_WINDOWS
1723 kmp_int64 last_upper;
1724#endif /* KMP_OS_WINDOWS */
1725} dispatch_private_info64_t;
1726#else /* KMP_STATIC_STEAL_ENABLED */
1727typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1728 kmp_int32 lb;
1729 kmp_int32 ub;
1730 kmp_int32 st;
1731 kmp_int32 tc;
1732
1733 kmp_int32 parm1;
1734 kmp_int32 parm2;
1735 kmp_int32 parm3;
1736 kmp_int32 parm4;
1737
1738 kmp_int32 count;
1739
1740 kmp_uint32 ordered_lower;
1741 kmp_uint32 ordered_upper;
1742#if KMP_OS_WINDOWS
1743 kmp_int32 last_upper;
1744#endif /* KMP_OS_WINDOWS */
1745} dispatch_private_info32_t;
1746
1747typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1748 kmp_int64 lb; /* lower-bound */
1749 kmp_int64 ub; /* upper-bound */
1750 kmp_int64 st; /* stride */
1751 kmp_int64 tc; /* trip count (number of iterations) */
1752
1753 /* parm[1-4] are used in different ways by different scheduling algorithms */
1754 kmp_int64 parm1;
1755 kmp_int64 parm2;
1756 kmp_int64 parm3;
1757 kmp_int64 parm4;
1758
1759 kmp_int64 count; /* current chunk number for static scheduling */
1760
1761 kmp_uint64 ordered_lower;
1762 kmp_uint64 ordered_upper;
1763#if KMP_OS_WINDOWS
1764 kmp_int64 last_upper;
1765#endif /* KMP_OS_WINDOWS */
1766} dispatch_private_info64_t;
1767#endif /* KMP_STATIC_STEAL_ENABLED */
1768
1769typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1770 union private_info {
1771 dispatch_private_info32_t p32;
1772 dispatch_private_info64_t p64;
1773 } u;
1774 enum sched_type schedule; /* scheduling algorithm */
1775 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1776 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1777 kmp_int32 ordered_bumped;
1778 // Stack of buffers for nest of serial regions
1779 struct dispatch_private_info *next;
1780 kmp_int32 type_size; /* the size of types in private_info */
1781#if KMP_USE_HIER_SCHED
1782 kmp_int32 hier_id;
1783 void *parent; /* hierarchical scheduling parent pointer */
1784#endif
1785 enum cons_type pushed_ws;
1786} dispatch_private_info_t;
1787
1788typedef struct dispatch_shared_info32 {
1789 /* chunk index under dynamic, number of idle threads under static-steal;
1790 iteration index otherwise */
1791 volatile kmp_uint32 iteration;
1792 volatile kmp_int32 num_done;
1793 volatile kmp_uint32 ordered_iteration;
1794 // Dummy to retain the structure size after making ordered_iteration scalar
1795 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1796} dispatch_shared_info32_t;
1797
1798typedef struct dispatch_shared_info64 {
1799 /* chunk index under dynamic, number of idle threads under static-steal;
1800 iteration index otherwise */
1801 volatile kmp_uint64 iteration;
1802 volatile kmp_int64 num_done;
1803 volatile kmp_uint64 ordered_iteration;
1804 // Dummy to retain the structure size after making ordered_iteration scalar
1805 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1806} dispatch_shared_info64_t;
1807
1808typedef struct dispatch_shared_info {
1809 union shared_info {
1810 dispatch_shared_info32_t s32;
1811 dispatch_shared_info64_t s64;
1812 } u;
1813 volatile kmp_uint32 buffer_index;
1814 volatile kmp_int32 doacross_buf_idx; // teamwise index
1815 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1816 kmp_int32 doacross_num_done; // count finished threads
1817#if KMP_USE_HIER_SCHED
1818 void *hier;
1819#endif
1820#if KMP_USE_HWLOC
1821 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1822 // machines (> 48 cores). Performance analysis showed that a cache thrash
1823 // was occurring and this padding helps alleviate the problem.
1824 char padding[64];
1825#endif
1826} dispatch_shared_info_t;
1827
1828typedef struct kmp_disp {
1829 /* Vector for ORDERED SECTION */
1830 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1831 /* Vector for END ORDERED SECTION */
1832 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1833
1834 dispatch_shared_info_t *th_dispatch_sh_current;
1835 dispatch_private_info_t *th_dispatch_pr_current;
1836
1837 dispatch_private_info_t *th_disp_buffer;
1838 kmp_uint32 th_disp_index;
1839 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1840 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1841 kmp_int64 *th_doacross_info; // info on loop bounds
1842#if KMP_USE_INTERNODE_ALIGNMENT
1843 char more_padding[INTERNODE_CACHE_LINE];
1844#endif
1845} kmp_disp_t;
1846
1847/* ------------------------------------------------------------------------ */
1848/* Barrier stuff */
1849
1850/* constants for barrier state update */
1851#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1852#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1853#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1854#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1855
1856#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1857#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1858#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1859
1860#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1861#error "Barrier sleep bit must be smaller than barrier bump bit"
1862#endif
1863#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1864#error "Barrier unused bit must be smaller than barrier bump bit"
1865#endif
1866
1867// Constants for release barrier wait state: currently, hierarchical only
1868#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1869#define KMP_BARRIER_OWN_FLAG \
1870 1 // Normal state; worker waiting on own b_go flag in release
1871#define KMP_BARRIER_PARENT_FLAG \
1872 2 // Special state; worker waiting on parent's b_go flag in release
1873#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1874 3 // Special state; tells worker to shift from parent to own b_go
1875#define KMP_BARRIER_SWITCHING \
1876 4 // Special state; worker resets appropriate flag on wake-up
1877
1878#define KMP_NOT_SAFE_TO_REAP \
1879 0 // Thread th_reap_state: not safe to reap (tasking)
1880#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1881
1882enum barrier_type {
1883 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1884 barriers if enabled) */
1885 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1886#if KMP_FAST_REDUCTION_BARRIER
1887 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1888#endif // KMP_FAST_REDUCTION_BARRIER
1889 bs_last_barrier /* Just a placeholder to mark the end */
1890};
1891
1892// to work with reduction barriers just like with plain barriers
1893#if !KMP_FAST_REDUCTION_BARRIER
1894#define bs_reduction_barrier bs_plain_barrier
1895#endif // KMP_FAST_REDUCTION_BARRIER
1896
1897typedef enum kmp_bar_pat { /* Barrier communication patterns */
1898 bp_linear_bar =
1899 0, /* Single level (degenerate) tree */
1900 bp_tree_bar =
1901 1, /* Balanced tree with branching factor 2^n */
1902 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1903 branching factor 2^n */
1904 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1905 bp_last_bar /* Placeholder to mark the end */
1906} kmp_bar_pat_e;
1907
1908#define KMP_BARRIER_ICV_PUSH 1
1909
1910/* Record for holding the values of the internal controls stack records */
1911typedef struct kmp_internal_control {
1912 int serial_nesting_level; /* corresponds to the value of the
1913 th_team_serialized field */
1914 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1915 thread) */
1916 kmp_int8
1917 bt_set; /* internal control for whether blocktime is explicitly set */
1918 int blocktime; /* internal control for blocktime */
1919#if KMP_USE_MONITOR
1920 int bt_intervals; /* internal control for blocktime intervals */
1921#endif
1922 int nproc; /* internal control for #threads for next parallel region (per
1923 thread) */
1924 int thread_limit; /* internal control for thread-limit-var */
1925 int max_active_levels; /* internal control for max_active_levels */
1926 kmp_r_sched_t
1927 sched; /* internal control for runtime schedule {sched,chunk} pair */
1928 kmp_proc_bind_t proc_bind; /* internal control for affinity */
1929 kmp_int32 default_device; /* internal control for default device */
1930 struct kmp_internal_control *next;
1931} kmp_internal_control_t;
1932
1933static inline void copy_icvs(kmp_internal_control_t *dst,
1934 kmp_internal_control_t *src) {
1935 *dst = *src;
1936}
1937
1938/* Thread barrier needs volatile barrier fields */
1939typedef struct KMP_ALIGN_CACHE kmp_bstate {
1940 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1941 // uses of it). It is not explicitly aligned below, because we *don't* want
1942 // it to be padded -- instead, we fit b_go into the same cache line with
1943 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1944 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1945 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1946 // same NGO store
1947 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1948 KMP_ALIGN_CACHE volatile kmp_uint64
1949 b_arrived; // STATE => task reached synch point.
1950 kmp_uint32 *skip_per_level;
1951 kmp_uint32 my_level;
1952 kmp_int32 parent_tid;
1953 kmp_int32 old_tid;
1954 kmp_uint32 depth;
1955 struct kmp_bstate *parent_bar;
1956 kmp_team_t *team;
1957 kmp_uint64 leaf_state;
1958 kmp_uint32 nproc;
1959 kmp_uint8 base_leaf_kids;
1960 kmp_uint8 leaf_kids;
1961 kmp_uint8 offset;
1962 kmp_uint8 wait_flag;
1963 kmp_uint8 use_oncore_barrier;
1964#if USE_DEBUGGER
1965 // The following field is intended for the debugger solely. Only the worker
1966 // thread itself accesses this field: the worker increases it by 1 when it
1967 // arrives to a barrier.
1968 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1969#endif /* USE_DEBUGGER */
1970} kmp_bstate_t;
1971
1972union KMP_ALIGN_CACHE kmp_barrier_union {
1973 double b_align; /* use worst case alignment */
1974 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1975 kmp_bstate_t bb;
1976};
1977
1978typedef union kmp_barrier_union kmp_balign_t;
1979
1980/* Team barrier needs only non-volatile arrived counter */
1981union KMP_ALIGN_CACHE kmp_barrier_team_union {
1982 double b_align; /* use worst case alignment */
1983 char b_pad[CACHE_LINE];
1984 struct {
1985 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1986#if USE_DEBUGGER
1987 // The following two fields are indended for the debugger solely. Only
1988 // primary thread of the team accesses these fields: the first one is
1989 // increased by 1 when the primary thread arrives to a barrier, the second
1990 // one is increased by one when all the threads arrived.
1991 kmp_uint b_master_arrived;
1992 kmp_uint b_team_arrived;
1993#endif
1994 };
1995};
1996
1997typedef union kmp_barrier_team_union kmp_balign_team_t;
1998
1999/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2000 threads when a condition changes. This is to workaround an NPTL bug where
2001 padding was added to pthread_cond_t which caused the initialization routine
2002 to write outside of the structure if compiled on pre-NPTL threads. */
2003#if KMP_OS_WINDOWS
2004typedef struct kmp_win32_mutex {
2005 /* The Lock */
2006 CRITICAL_SECTION cs;
2007} kmp_win32_mutex_t;
2008
2009typedef struct kmp_win32_cond {
2010 /* Count of the number of waiters. */
2011 int waiters_count_;
2012
2013 /* Serialize access to <waiters_count_> */
2014 kmp_win32_mutex_t waiters_count_lock_;
2015
2016 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2017 int release_count_;
2018
2019 /* Keeps track of the current "generation" so that we don't allow */
2020 /* one thread to steal all the "releases" from the broadcast. */
2021 int wait_generation_count_;
2022
2023 /* A manual-reset event that's used to block and release waiting threads. */
2024 HANDLE event_;
2025} kmp_win32_cond_t;
2026#endif
2027
2028#if KMP_OS_UNIX
2029
2030union KMP_ALIGN_CACHE kmp_cond_union {
2031 double c_align;
2032 char c_pad[CACHE_LINE];
2033 pthread_cond_t c_cond;
2034};
2035
2036typedef union kmp_cond_union kmp_cond_align_t;
2037
2038union KMP_ALIGN_CACHE kmp_mutex_union {
2039 double m_align;
2040 char m_pad[CACHE_LINE];
2041 pthread_mutex_t m_mutex;
2042};
2043
2044typedef union kmp_mutex_union kmp_mutex_align_t;
2045
2046#endif /* KMP_OS_UNIX */
2047
2048typedef struct kmp_desc_base {
2049 void *ds_stackbase;
2050 size_t ds_stacksize;
2051 int ds_stackgrow;
2052 kmp_thread_t ds_thread;
2053 volatile int ds_tid;
2054 int ds_gtid;
2055#if KMP_OS_WINDOWS
2056 volatile int ds_alive;
2057 DWORD ds_thread_id;
2058/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2059 However, debugger support (libomp_db) cannot work with handles, because they
2060 uncomparable. For example, debugger requests info about thread with handle h.
2061 h is valid within debugger process, and meaningless within debugee process.
2062 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2063 within debugee process, but it is a *new* handle which does *not* equal to
2064 any other handle in debugee... The only way to compare handles is convert
2065 them to system-wide ids. GetThreadId() function is available only in
2066 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2067 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2068 thread id by call to GetCurrentThreadId() from within the thread and save it
2069 to let libomp_db identify threads. */
2070#endif /* KMP_OS_WINDOWS */
2071} kmp_desc_base_t;
2072
2073typedef union KMP_ALIGN_CACHE kmp_desc {
2074 double ds_align; /* use worst case alignment */
2075 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2076 kmp_desc_base_t ds;
2077} kmp_desc_t;
2078
2079typedef struct kmp_local {
2080 volatile int this_construct; /* count of single's encountered by thread */
2081 void *reduce_data;
2082#if KMP_USE_BGET
2083 void *bget_data;
2084 void *bget_list;
2085#if !USE_CMP_XCHG_FOR_BGET
2086#ifdef USE_QUEUING_LOCK_FOR_BGET
2087 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2088#else
2089 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2090// bootstrap lock so we can use it at library
2091// shutdown.
2092#endif /* USE_LOCK_FOR_BGET */
2093#endif /* ! USE_CMP_XCHG_FOR_BGET */
2094#endif /* KMP_USE_BGET */
2095
2096 PACKED_REDUCTION_METHOD_T
2097 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2098 __kmpc_end_reduce*() */
2099
2100} kmp_local_t;
2101
2102#define KMP_CHECK_UPDATE(a, b) \
2103 if ((a) != (b)) \
2104 (a) = (b)
2105#define KMP_CHECK_UPDATE_SYNC(a, b) \
2106 if ((a) != (b)) \
2107 TCW_SYNC_PTR((a), (b))
2108
2109#define get__blocktime(xteam, xtid) \
2110 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2111#define get__bt_set(xteam, xtid) \
2112 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2113#if KMP_USE_MONITOR
2114#define get__bt_intervals(xteam, xtid) \
2115 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2116#endif
2117
2118#define get__dynamic_2(xteam, xtid) \
2119 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2120#define get__nproc_2(xteam, xtid) \
2121 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2122#define get__sched_2(xteam, xtid) \
2123 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2124
2125#define set__blocktime_team(xteam, xtid, xval) \
2126 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2127 (xval))
2128
2129#if KMP_USE_MONITOR
2130#define set__bt_intervals_team(xteam, xtid, xval) \
2131 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2132 (xval))
2133#endif
2134
2135#define set__bt_set_team(xteam, xtid, xval) \
2136 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2137
2138#define set__dynamic(xthread, xval) \
2139 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2140#define get__dynamic(xthread) \
2141 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2142
2143#define set__nproc(xthread, xval) \
2144 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2145
2146#define set__thread_limit(xthread, xval) \
2147 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2148
2149#define set__max_active_levels(xthread, xval) \
2150 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2151
2152#define get__max_active_levels(xthread) \
2153 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2154
2155#define set__sched(xthread, xval) \
2156 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2157
2158#define set__proc_bind(xthread, xval) \
2159 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2160#define get__proc_bind(xthread) \
2161 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2162
2163// OpenMP tasking data structures
2164
2165typedef enum kmp_tasking_mode {
2166 tskm_immediate_exec = 0,
2167 tskm_extra_barrier = 1,
2168 tskm_task_teams = 2,
2169 tskm_max = 2
2170} kmp_tasking_mode_t;
2171
2172extern kmp_tasking_mode_t
2173 __kmp_tasking_mode; /* determines how/when to execute tasks */
2174extern int __kmp_task_stealing_constraint;
2175extern int __kmp_enable_task_throttling;
2176extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2177// specified, defaults to 0 otherwise
2178// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2179extern kmp_int32 __kmp_max_task_priority;
2180// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2181extern kmp_uint64 __kmp_taskloop_min_tasks;
2182
2183/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2184 taskdata first */
2185#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2186#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2187
2188// The tt_found_tasks flag is a signal to all threads in the team that tasks
2189// were spawned and queued since the previous barrier release.
2190#define KMP_TASKING_ENABLED(task_team) \
2191 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2199typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2200
2201typedef union kmp_cmplrdata {
2202 kmp_int32 priority;
2203 kmp_routine_entry_t
2204 destructors; /* pointer to function to invoke deconstructors of
2205 firstprivate C++ objects */
2206 /* future data */
2207} kmp_cmplrdata_t;
2208
2209/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2212typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2213 void *shareds;
2214 kmp_routine_entry_t
2215 routine;
2216 kmp_int32 part_id;
2217 kmp_cmplrdata_t
2218 data1; /* Two known optional additions: destructors and priority */
2219 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2220 /* future data */
2221 /* private vars */
2222} kmp_task_t;
2223
2228typedef struct kmp_taskgroup {
2229 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2230 std::atomic<kmp_int32>
2231 cancel_request; // request for cancellation of this taskgroup
2232 struct kmp_taskgroup *parent; // parent taskgroup
2233 // Block of data to perform task reduction
2234 void *reduce_data; // reduction related info
2235 kmp_int32 reduce_num_data; // number of data items to reduce
2236 uintptr_t *gomp_data; // gomp reduction data
2237} kmp_taskgroup_t;
2238
2239// forward declarations
2240typedef union kmp_depnode kmp_depnode_t;
2241typedef struct kmp_depnode_list kmp_depnode_list_t;
2242typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2243
2244#define KMP_DEP_IN 0x1
2245#define KMP_DEP_OUT 0x2
2246#define KMP_DEP_INOUT 0x3
2247#define KMP_DEP_MTX 0x4
2248#define KMP_DEP_SET 0x8
2249// Compiler sends us this info:
2250typedef struct kmp_depend_info {
2251 kmp_intptr_t base_addr;
2252 size_t len;
2253 union {
2254 kmp_uint8 flag;
2255 struct {
2256 unsigned in : 1;
2257 unsigned out : 1;
2258 unsigned mtx : 1;
2259 unsigned set : 1;
2260 } flags;
2261 };
2262} kmp_depend_info_t;
2263
2264// Internal structures to work with task dependencies:
2265struct kmp_depnode_list {
2266 kmp_depnode_t *node;
2267 kmp_depnode_list_t *next;
2268};
2269
2270// Max number of mutexinoutset dependencies per node
2271#define MAX_MTX_DEPS 4
2272
2273typedef struct kmp_base_depnode {
2274 kmp_depnode_list_t *successors; /* used under lock */
2275 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2276 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2277 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2278 kmp_lock_t lock; /* guards shared fields: task, successors */
2279#if KMP_SUPPORT_GRAPH_OUTPUT
2280 kmp_uint32 id;
2281#endif
2282 std::atomic<kmp_int32> npredecessors;
2283 std::atomic<kmp_int32> nrefs;
2284} kmp_base_depnode_t;
2285
2286union KMP_ALIGN_CACHE kmp_depnode {
2287 double dn_align; /* use worst case alignment */
2288 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2289 kmp_base_depnode_t dn;
2290};
2291
2292struct kmp_dephash_entry {
2293 kmp_intptr_t addr;
2294 kmp_depnode_t *last_out;
2295 kmp_depnode_list_t *last_set;
2296 kmp_depnode_list_t *prev_set;
2297 kmp_uint8 last_flag;
2298 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2299 kmp_dephash_entry_t *next_in_bucket;
2300};
2301
2302typedef struct kmp_dephash {
2303 kmp_dephash_entry_t **buckets;
2304 size_t size;
2305 size_t generation;
2306 kmp_uint32 nelements;
2307 kmp_uint32 nconflicts;
2308} kmp_dephash_t;
2309
2310typedef struct kmp_task_affinity_info {
2311 kmp_intptr_t base_addr;
2312 size_t len;
2313 struct {
2314 bool flag1 : 1;
2315 bool flag2 : 1;
2316 kmp_int32 reserved : 30;
2317 } flags;
2318} kmp_task_affinity_info_t;
2319
2320typedef enum kmp_event_type_t {
2321 KMP_EVENT_UNINITIALIZED = 0,
2322 KMP_EVENT_ALLOW_COMPLETION = 1
2323} kmp_event_type_t;
2324
2325typedef struct {
2326 kmp_event_type_t type;
2327 kmp_tas_lock_t lock;
2328 union {
2329 kmp_task_t *task;
2330 } ed;
2331} kmp_event_t;
2332
2333#ifdef BUILD_TIED_TASK_STACK
2334
2335/* Tied Task stack definitions */
2336typedef struct kmp_stack_block {
2337 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2338 struct kmp_stack_block *sb_next;
2339 struct kmp_stack_block *sb_prev;
2340} kmp_stack_block_t;
2341
2342typedef struct kmp_task_stack {
2343 kmp_stack_block_t ts_first_block; // first block of stack entries
2344 kmp_taskdata_t **ts_top; // pointer to the top of stack
2345 kmp_int32 ts_entries; // number of entries on the stack
2346} kmp_task_stack_t;
2347
2348#endif // BUILD_TIED_TASK_STACK
2349
2350typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2351 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2352 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2353 unsigned final : 1; /* task is final(1) so execute immediately */
2354 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2355 code path */
2356 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2357 invoke destructors from the runtime */
2358 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2359 context of the RTL) */
2360 unsigned priority_specified : 1; /* set if the compiler provides priority
2361 setting for the task */
2362 unsigned detachable : 1; /* 1 == can detach */
2363 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2364 unsigned reserved : 8; /* reserved for compiler use */
2365
2366 /* Library flags */ /* Total library flags must be 16 bits */
2367 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2368 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2369 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2370 // (1) or may be deferred (0)
2371 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2372 // (0) [>= 2 threads]
2373 /* If either team_serial or tasking_ser is set, task team may be NULL */
2374 /* Task State Flags: */
2375 unsigned started : 1; /* 1==started, 0==not started */
2376 unsigned executing : 1; /* 1==executing, 0==not executing */
2377 unsigned complete : 1; /* 1==complete, 0==not complete */
2378 unsigned freed : 1; /* 1==freed, 0==allocated */
2379 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2380 unsigned reserved31 : 7; /* reserved for library use */
2381
2382} kmp_tasking_flags_t;
2383
2384struct kmp_taskdata { /* aligned during dynamic allocation */
2385 kmp_int32 td_task_id; /* id, assigned by debugger */
2386 kmp_tasking_flags_t td_flags; /* task flags */
2387 kmp_team_t *td_team; /* team for this task */
2388 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2389 /* Currently not used except for perhaps IDB */
2390 kmp_taskdata_t *td_parent; /* parent task */
2391 kmp_int32 td_level; /* task nesting level */
2392 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2393 ident_t *td_ident; /* task identifier */
2394 // Taskwait data.
2395 ident_t *td_taskwait_ident;
2396 kmp_uint32 td_taskwait_counter;
2397 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2398 KMP_ALIGN_CACHE kmp_internal_control_t
2399 td_icvs; /* Internal control variables for the task */
2400 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2401 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2402 deallocated */
2403 std::atomic<kmp_int32>
2404 td_incomplete_child_tasks; /* Child tasks not yet complete */
2405 kmp_taskgroup_t
2406 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2407 kmp_dephash_t
2408 *td_dephash; // Dependencies for children tasks are tracked from here
2409 kmp_depnode_t
2410 *td_depnode; // Pointer to graph node if this task has dependencies
2411 kmp_task_team_t *td_task_team;
2412 // The global thread id of the encountering thread. We need it because when a
2413 // regular task depends on a hidden helper task, and the hidden helper task
2414 // is finished on a hidden helper thread, it will call __kmp_release_deps to
2415 // release all dependences. If now the task is a regular task, we need to pass
2416 // the encountering gtid such that the task will be picked up and executed by
2417 // its encountering team instead of hidden helper team.
2418 kmp_int32 encountering_gtid;
2419 size_t td_size_alloc; // Size of task structure, including shareds etc.
2420#if defined(KMP_GOMP_COMPAT)
2421 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2422 kmp_int32 td_size_loop_bounds;
2423#endif
2424 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2425#if defined(KMP_GOMP_COMPAT)
2426 // GOMP sends in a copy function for copy constructors
2427 void (*td_copy_func)(void *, void *);
2428#endif
2429 kmp_event_t td_allow_completion_event;
2430#if OMPT_SUPPORT
2431 ompt_task_info_t ompt_task_info;
2432#endif
2433}; // struct kmp_taskdata
2434
2435// Make sure padding above worked
2436KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2437
2438// Data for task team but per thread
2439typedef struct kmp_base_thread_data {
2440 kmp_info_p *td_thr; // Pointer back to thread info
2441 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2442 // queued?
2443 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2444 kmp_taskdata_t *
2445 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2446 kmp_int32 td_deque_size; // Size of deck
2447 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2448 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2449 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2450 // GEH: shouldn't this be volatile since used in while-spin?
2451 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2452#ifdef BUILD_TIED_TASK_STACK
2453 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2454// scheduling constraint
2455#endif // BUILD_TIED_TASK_STACK
2456} kmp_base_thread_data_t;
2457
2458#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2459#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2460
2461#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2462#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2463
2464typedef union KMP_ALIGN_CACHE kmp_thread_data {
2465 kmp_base_thread_data_t td;
2466 double td_align; /* use worst case alignment */
2467 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2468} kmp_thread_data_t;
2469
2470// Data for task teams which are used when tasking is enabled for the team
2471typedef struct kmp_base_task_team {
2472 kmp_bootstrap_lock_t
2473 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2474 /* must be bootstrap lock since used at library shutdown*/
2475 kmp_task_team_t *tt_next; /* For linking the task team free list */
2476 kmp_thread_data_t
2477 *tt_threads_data; /* Array of per-thread structures for task team */
2478 /* Data survives task team deallocation */
2479 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2480 executing this team? */
2481 /* TRUE means tt_threads_data is set up and initialized */
2482 kmp_int32 tt_nproc; /* #threads in team */
2483 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2484 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2485 kmp_int32 tt_untied_task_encountered;
2486 // There is hidden helper thread encountered in this task team so that we must
2487 // wait when waiting on task team
2488 kmp_int32 tt_hidden_helper_task_encountered;
2489
2490 KMP_ALIGN_CACHE
2491 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2492
2493 KMP_ALIGN_CACHE
2494 volatile kmp_uint32
2495 tt_active; /* is the team still actively executing tasks */
2496} kmp_base_task_team_t;
2497
2498union KMP_ALIGN_CACHE kmp_task_team {
2499 kmp_base_task_team_t tt;
2500 double tt_align; /* use worst case alignment */
2501 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2502};
2503
2504#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2505// Free lists keep same-size free memory slots for fast memory allocation
2506// routines
2507typedef struct kmp_free_list {
2508 void *th_free_list_self; // Self-allocated tasks free list
2509 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2510 // threads
2511 void *th_free_list_other; // Non-self free list (to be returned to owner's
2512 // sync list)
2513} kmp_free_list_t;
2514#endif
2515#if KMP_NESTED_HOT_TEAMS
2516// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2517// are not put in teams pool, and they don't put threads in threads pool.
2518typedef struct kmp_hot_team_ptr {
2519 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2520 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2521} kmp_hot_team_ptr_t;
2522#endif
2523typedef struct kmp_teams_size {
2524 kmp_int32 nteams; // number of teams in a league
2525 kmp_int32 nth; // number of threads in each team of the league
2526} kmp_teams_size_t;
2527
2528// This struct stores a thread that acts as a "root" for a contention
2529// group. Contention groups are rooted at kmp_root threads, but also at
2530// each primary thread of each team created in the teams construct.
2531// This struct therefore also stores a thread_limit associated with
2532// that contention group, and a counter to track the number of threads
2533// active in that contention group. Each thread has a list of these: CG
2534// root threads have an entry in their list in which cg_root refers to
2535// the thread itself, whereas other workers in the CG will have a
2536// single entry where cg_root is same as the entry containing their CG
2537// root. When a thread encounters a teams construct, it will add a new
2538// entry to the front of its list, because it now roots a new CG.
2539typedef struct kmp_cg_root {
2540 kmp_info_p *cg_root; // "root" thread for a contention group
2541 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2542 // thread_limit clause for teams primary threads
2543 kmp_int32 cg_thread_limit;
2544 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2545 struct kmp_cg_root *up; // pointer to higher level CG root in list
2546} kmp_cg_root_t;
2547
2548// OpenMP thread data structures
2549
2550typedef struct KMP_ALIGN_CACHE kmp_base_info {
2551 /* Start with the readonly data which is cache aligned and padded. This is
2552 written before the thread starts working by the primary thread. Uber
2553 masters may update themselves later. Usage does not consider serialized
2554 regions. */
2555 kmp_desc_t th_info;
2556 kmp_team_p *th_team; /* team we belong to */
2557 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2558 kmp_info_p *th_next_pool; /* next available thread in the pool */
2559 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2560 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2561
2562 /* The following are cached from the team info structure */
2563 /* TODO use these in more places as determined to be needed via profiling */
2564 int th_team_nproc; /* number of threads in a team */
2565 kmp_info_p *th_team_master; /* the team's primary thread */
2566 int th_team_serialized; /* team is serialized */
2567 microtask_t th_teams_microtask; /* save entry address for teams construct */
2568 int th_teams_level; /* save initial level of teams construct */
2569/* it is 0 on device but may be any on host */
2570
2571/* The blocktime info is copied from the team struct to the thread struct */
2572/* at the start of a barrier, and the values stored in the team are used */
2573/* at points in the code where the team struct is no longer guaranteed */
2574/* to exist (from the POV of worker threads). */
2575#if KMP_USE_MONITOR
2576 int th_team_bt_intervals;
2577 int th_team_bt_set;
2578#else
2579 kmp_uint64 th_team_bt_intervals;
2580#endif
2581
2582#if KMP_AFFINITY_SUPPORTED
2583 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2584#endif
2585 omp_allocator_handle_t th_def_allocator; /* default allocator */
2586 /* The data set by the primary thread at reinit, then R/W by the worker */
2587 KMP_ALIGN_CACHE int
2588 th_set_nproc; /* if > 0, then only use this request for the next fork */
2589#if KMP_NESTED_HOT_TEAMS
2590 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2591#endif
2592 kmp_proc_bind_t
2593 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2594 kmp_teams_size_t
2595 th_teams_size; /* number of teams/threads in teams construct */
2596#if KMP_AFFINITY_SUPPORTED
2597 int th_current_place; /* place currently bound to */
2598 int th_new_place; /* place to bind to in par reg */
2599 int th_first_place; /* first place in partition */
2600 int th_last_place; /* last place in partition */
2601#endif
2602 int th_prev_level; /* previous level for affinity format */
2603 int th_prev_num_threads; /* previous num_threads for affinity format */
2604#if USE_ITT_BUILD
2605 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2606 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2607 kmp_uint64 th_frame_time; /* frame timestamp */
2608#endif /* USE_ITT_BUILD */
2609 kmp_local_t th_local;
2610 struct private_common *th_pri_head;
2611
2612 /* Now the data only used by the worker (after initial allocation) */
2613 /* TODO the first serial team should actually be stored in the info_t
2614 structure. this will help reduce initial allocation overhead */
2615 KMP_ALIGN_CACHE kmp_team_p
2616 *th_serial_team; /*serialized team held in reserve*/
2617
2618#if OMPT_SUPPORT
2619 ompt_thread_info_t ompt_thread_info;
2620#endif
2621
2622 /* The following are also read by the primary thread during reinit */
2623 struct common_table *th_pri_common;
2624
2625 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2626 /* while awaiting queuing lock acquire */
2627
2628 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2629
2630 ident_t *th_ident;
2631 unsigned th_x; // Random number generator data
2632 unsigned th_a; // Random number generator data
2633
2634 /* Tasking-related data for the thread */
2635 kmp_task_team_t *th_task_team; // Task team struct
2636 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2637 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2638 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2639 // at nested levels
2640 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2641 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2642 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2643 // tasking, thus safe to reap
2644
2645 /* More stuff for keeping track of active/sleeping threads (this part is
2646 written by the worker thread) */
2647 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2648 int th_active; // ! sleeping; 32 bits for TCR/TCW
2649 struct cons_header *th_cons; // used for consistency check
2650#if KMP_USE_HIER_SCHED
2651 // used for hierarchical scheduling
2652 kmp_hier_private_bdata_t *th_hier_bar_data;
2653#endif
2654
2655 /* Add the syncronizing data which is cache aligned and padded. */
2656 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2657
2658 KMP_ALIGN_CACHE volatile kmp_int32
2659 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2660
2661#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2662#define NUM_LISTS 4
2663 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2664// allocation routines
2665#endif
2666
2667#if KMP_OS_WINDOWS
2668 kmp_win32_cond_t th_suspend_cv;
2669 kmp_win32_mutex_t th_suspend_mx;
2670 std::atomic<int> th_suspend_init;
2671#endif
2672#if KMP_OS_UNIX
2673 kmp_cond_align_t th_suspend_cv;
2674 kmp_mutex_align_t th_suspend_mx;
2675 std::atomic<int> th_suspend_init_count;
2676#endif
2677
2678#if USE_ITT_BUILD
2679 kmp_itt_mark_t th_itt_mark_single;
2680// alignment ???
2681#endif /* USE_ITT_BUILD */
2682#if KMP_STATS_ENABLED
2683 kmp_stats_list *th_stats;
2684#endif
2685#if KMP_OS_UNIX
2686 std::atomic<bool> th_blocking;
2687#endif
2688 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2689} kmp_base_info_t;
2690
2691typedef union KMP_ALIGN_CACHE kmp_info {
2692 double th_align; /* use worst case alignment */
2693 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2694 kmp_base_info_t th;
2695} kmp_info_t;
2696
2697// OpenMP thread team data structures
2698
2699typedef struct kmp_base_data {
2700 volatile kmp_uint32 t_value;
2701} kmp_base_data_t;
2702
2703typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2704 double dt_align; /* use worst case alignment */
2705 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2706 kmp_base_data_t dt;
2707} kmp_sleep_team_t;
2708
2709typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2710 double dt_align; /* use worst case alignment */
2711 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2712 kmp_base_data_t dt;
2713} kmp_ordered_team_t;
2714
2715typedef int (*launch_t)(int gtid);
2716
2717/* Minimum number of ARGV entries to malloc if necessary */
2718#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2719
2720// Set up how many argv pointers will fit in cache lines containing
2721// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2722// larger value for more space between the primary write/worker read section and
2723// read/write by all section seems to buy more performance on EPCC PARALLEL.
2724#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2725#define KMP_INLINE_ARGV_BYTES \
2726 (4 * CACHE_LINE - \
2727 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2728 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2729 CACHE_LINE))
2730#else
2731#define KMP_INLINE_ARGV_BYTES \
2732 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2733#endif
2734#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2735
2736typedef struct KMP_ALIGN_CACHE kmp_base_team {
2737 // Synchronization Data
2738 // ---------------------------------------------------------------------------
2739 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2740 kmp_balign_team_t t_bar[bs_last_barrier];
2741 std::atomic<int> t_construct; // count of single directive encountered by team
2742 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2743
2744 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2745 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2746 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2747
2748 // Primary thread only
2749 // ---------------------------------------------------------------------------
2750 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2751 int t_master_this_cons; // "this_construct" single counter of primary thread
2752 // in parent team
2753 ident_t *t_ident; // if volatile, have to change too much other crud to
2754 // volatile too
2755 kmp_team_p *t_parent; // parent team
2756 kmp_team_p *t_next_pool; // next free team in the team pool
2757 kmp_disp_t *t_dispatch; // thread's dispatch data
2758 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2759 kmp_proc_bind_t t_proc_bind; // bind type for par region
2760#if USE_ITT_BUILD
2761 kmp_uint64 t_region_time; // region begin timestamp
2762#endif /* USE_ITT_BUILD */
2763
2764 // Primary thread write, workers read
2765 // --------------------------------------------------------------------------
2766 KMP_ALIGN_CACHE void **t_argv;
2767 int t_argc;
2768 int t_nproc; // number of threads in team
2769 microtask_t t_pkfn;
2770 launch_t t_invoke; // procedure to launch the microtask
2771
2772#if OMPT_SUPPORT
2773 ompt_team_info_t ompt_team_info;
2774 ompt_lw_taskteam_t *ompt_serialized_team_info;
2775#endif
2776
2777#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2778 kmp_int8 t_fp_control_saved;
2779 kmp_int8 t_pad2b;
2780 kmp_int16 t_x87_fpu_control_word; // FP control regs
2781 kmp_uint32 t_mxcsr;
2782#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2783
2784 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2785
2786 KMP_ALIGN_CACHE kmp_info_t **t_threads;
2787 kmp_taskdata_t
2788 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2789 int t_level; // nested parallel level
2790
2791 KMP_ALIGN_CACHE int t_max_argc;
2792 int t_max_nproc; // max threads this team can handle (dynamically expandable)
2793 int t_serialized; // levels deep of serialized teams
2794 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2795 int t_id; // team's id, assigned by debugger.
2796 int t_active_level; // nested active parallel level
2797 kmp_r_sched_t t_sched; // run-time schedule for the team
2798#if KMP_AFFINITY_SUPPORTED
2799 int t_first_place; // first & last place in parent thread's partition.
2800 int t_last_place; // Restore these values to primary thread after par region.
2801#endif // KMP_AFFINITY_SUPPORTED
2802 int t_display_affinity;
2803 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2804 // omp_set_num_threads() call
2805 omp_allocator_handle_t t_def_allocator; /* default allocator */
2806
2807// Read/write by workers as well
2808#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2809 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2810 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2811 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2812 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2813 char dummy_padding[1024];
2814#endif
2815 // Internal control stack for additional nested teams.
2816 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2817 // for SERIALIZED teams nested 2 or more levels deep
2818 // typed flag to store request state of cancellation
2819 std::atomic<kmp_int32> t_cancel_request;
2820 int t_master_active; // save on fork, restore on join
2821 void *t_copypriv_data; // team specific pointer to copyprivate data array
2822#if KMP_OS_WINDOWS
2823 std::atomic<kmp_uint32> t_copyin_counter;
2824#endif
2825#if USE_ITT_BUILD
2826 void *t_stack_id; // team specific stack stitching id (for ittnotify)
2827#endif /* USE_ITT_BUILD */
2828} kmp_base_team_t;
2829
2830union KMP_ALIGN_CACHE kmp_team {
2831 kmp_base_team_t t;
2832 double t_align; /* use worst case alignment */
2833 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2834};
2835
2836typedef union KMP_ALIGN_CACHE kmp_time_global {
2837 double dt_align; /* use worst case alignment */
2838 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2839 kmp_base_data_t dt;
2840} kmp_time_global_t;
2841
2842typedef struct kmp_base_global {
2843 /* cache-aligned */
2844 kmp_time_global_t g_time;
2845
2846 /* non cache-aligned */
2847 volatile int g_abort;
2848 volatile int g_done;
2849
2850 int g_dynamic;
2851 enum dynamic_mode g_dynamic_mode;
2852} kmp_base_global_t;
2853
2854typedef union KMP_ALIGN_CACHE kmp_global {
2855 kmp_base_global_t g;
2856 double g_align; /* use worst case alignment */
2857 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2858} kmp_global_t;
2859
2860typedef struct kmp_base_root {
2861 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2862 // (r_in_parallel>= 0)
2863 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2864 // the synch overhead or keeping r_active
2865 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2866 // keeps a count of active parallel regions per root
2867 std::atomic<int> r_in_parallel;
2868 // GEH: This is misnamed, should be r_active_levels
2869 kmp_team_t *r_root_team;
2870 kmp_team_t *r_hot_team;
2871 kmp_info_t *r_uber_thread;
2872 kmp_lock_t r_begin_lock;
2873 volatile int r_begin;
2874 int r_blocktime; /* blocktime for this root and descendants */
2875#if KMP_AFFINITY_SUPPORTED
2876 int r_affinity_assigned;
2877#endif // KMP_AFFINITY_SUPPORTED
2878} kmp_base_root_t;
2879
2880typedef union KMP_ALIGN_CACHE kmp_root {
2881 kmp_base_root_t r;
2882 double r_align; /* use worst case alignment */
2883 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2884} kmp_root_t;
2885
2886struct fortran_inx_info {
2887 kmp_int32 data;
2888};
2889
2890/* ------------------------------------------------------------------------ */
2891
2892extern int __kmp_settings;
2893extern int __kmp_duplicate_library_ok;
2894#if USE_ITT_BUILD
2895extern int __kmp_forkjoin_frames;
2896extern int __kmp_forkjoin_frames_mode;
2897#endif
2898extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2899extern int __kmp_determ_red;
2900
2901#ifdef KMP_DEBUG
2902extern int kmp_a_debug;
2903extern int kmp_b_debug;
2904extern int kmp_c_debug;
2905extern int kmp_d_debug;
2906extern int kmp_e_debug;
2907extern int kmp_f_debug;
2908#endif /* KMP_DEBUG */
2909
2910/* For debug information logging using rotating buffer */
2911#define KMP_DEBUG_BUF_LINES_INIT 512
2912#define KMP_DEBUG_BUF_LINES_MIN 1
2913
2914#define KMP_DEBUG_BUF_CHARS_INIT 128
2915#define KMP_DEBUG_BUF_CHARS_MIN 2
2916
2917extern int
2918 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2919extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2920extern int
2921 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2922extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2923 entry pointer */
2924
2925extern char *__kmp_debug_buffer; /* Debug buffer itself */
2926extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2927 printed in buffer so far */
2928extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2929 recommended in warnings */
2930/* end rotating debug buffer */
2931
2932#ifdef KMP_DEBUG
2933extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2934
2935#define KMP_PAR_RANGE_ROUTINE_LEN 1024
2936extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2937#define KMP_PAR_RANGE_FILENAME_LEN 1024
2938extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2939extern int __kmp_par_range_lb;
2940extern int __kmp_par_range_ub;
2941#endif
2942
2943/* For printing out dynamic storage map for threads and teams */
2944extern int
2945 __kmp_storage_map; /* True means print storage map for threads and teams */
2946extern int __kmp_storage_map_verbose; /* True means storage map includes
2947 placement info */
2948extern int __kmp_storage_map_verbose_specified;
2949
2950#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2951extern kmp_cpuinfo_t __kmp_cpuinfo;
2952#endif
2953
2954extern volatile int __kmp_init_serial;
2955extern volatile int __kmp_init_gtid;
2956extern volatile int __kmp_init_common;
2957extern volatile int __kmp_init_middle;
2958extern volatile int __kmp_init_parallel;
2959#if KMP_USE_MONITOR
2960extern volatile int __kmp_init_monitor;
2961#endif
2962extern volatile int __kmp_init_user_locks;
2963extern volatile int __kmp_init_hidden_helper_threads;
2964extern int __kmp_init_counter;
2965extern int __kmp_root_counter;
2966extern int __kmp_version;
2967
2968/* list of address of allocated caches for commons */
2969extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2970
2971/* Barrier algorithm types and options */
2972extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2973extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2974extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2975extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2976extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2977extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2978extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2979extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2980extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2981extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2982extern char const *__kmp_barrier_type_name[bs_last_barrier];
2983extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2984
2985/* Global Locks */
2986extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2987extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2988extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2989extern kmp_bootstrap_lock_t
2990 __kmp_exit_lock; /* exit() is not always thread-safe */
2991#if KMP_USE_MONITOR
2992extern kmp_bootstrap_lock_t
2993 __kmp_monitor_lock; /* control monitor thread creation */
2994#endif
2995extern kmp_bootstrap_lock_t
2996 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2997 __kmp_threads expansion to co-exist */
2998
2999extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3000extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3001extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3002
3003extern enum library_type __kmp_library;
3004
3005extern enum sched_type __kmp_sched; /* default runtime scheduling */
3006extern enum sched_type __kmp_static; /* default static scheduling method */
3007extern enum sched_type __kmp_guided; /* default guided scheduling method */
3008extern enum sched_type __kmp_auto; /* default auto scheduling method */
3009extern int __kmp_chunk; /* default runtime chunk size */
3010extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3011
3012extern size_t __kmp_stksize; /* stack size per thread */
3013#if KMP_USE_MONITOR
3014extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3015#endif
3016extern size_t __kmp_stkoffset; /* stack offset per thread */
3017extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3018
3019extern size_t
3020 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3021extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3022extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3023extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3024extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3025extern int __kmp_generate_warnings; /* should we issue warnings? */
3026extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3027
3028#ifdef DEBUG_SUSPEND
3029extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3030#endif
3031
3032extern kmp_int32 __kmp_use_yield;
3033extern kmp_int32 __kmp_use_yield_exp_set;
3034extern kmp_uint32 __kmp_yield_init;
3035extern kmp_uint32 __kmp_yield_next;
3036
3037/* ------------------------------------------------------------------------- */
3038extern int __kmp_allThreadsSpecified;
3039
3040extern size_t __kmp_align_alloc;
3041/* following data protected by initialization routines */
3042extern int __kmp_xproc; /* number of processors in the system */
3043extern int __kmp_avail_proc; /* number of processors available to the process */
3044extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3045extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3046// maximum total number of concurrently-existing threads on device
3047extern int __kmp_max_nth;
3048// maximum total number of concurrently-existing threads in a contention group
3049extern int __kmp_cg_max_nth;
3050extern int __kmp_teams_max_nth; // max threads used in a teams construct
3051extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3052 __kmp_root */
3053extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3054 region a la OMP_NUM_THREADS */
3055extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3056 initialization */
3057extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3058 used (fixed) */
3059extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3060 (__kmpc_threadprivate_cached()) */
3061extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3062 blocking (env setting) */
3063#if KMP_USE_MONITOR
3064extern int
3065 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3066extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3067 blocking */
3068#endif
3069#ifdef KMP_ADJUST_BLOCKTIME
3070extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3071#endif /* KMP_ADJUST_BLOCKTIME */
3072#ifdef KMP_DFLT_NTH_CORES
3073extern int __kmp_ncores; /* Total number of cores for threads placement */
3074#endif
3075/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3076extern int __kmp_abort_delay;
3077
3078extern int __kmp_need_register_atfork_specified;
3079extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3080 to install fork handler */
3081extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3082 0 - not set, will be set at runtime
3083 1 - using stack search
3084 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3085 X*) or TlsGetValue(Windows* OS))
3086 3 - static TLS (__declspec(thread) __kmp_gtid),
3087 Linux* OS .so only. */
3088extern int
3089 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3090#ifdef KMP_TDATA_GTID
3091extern KMP_THREAD_LOCAL int __kmp_gtid;
3092#endif
3093extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3094extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3095#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3096extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3097extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3098extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3099#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3100
3101// max_active_levels for nested parallelism enabled by default via
3102// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3103extern int __kmp_dflt_max_active_levels;
3104// Indicates whether value of __kmp_dflt_max_active_levels was already
3105// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3106extern bool __kmp_dflt_max_active_levels_set;
3107extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3108 concurrent execution per team */
3109#if KMP_NESTED_HOT_TEAMS
3110extern int __kmp_hot_teams_mode;
3111extern int __kmp_hot_teams_max_level;
3112#endif
3113
3114#if KMP_OS_LINUX
3115extern enum clock_function_type __kmp_clock_function;
3116extern int __kmp_clock_function_param;
3117#endif /* KMP_OS_LINUX */
3118
3119#if KMP_MIC_SUPPORTED
3120extern enum mic_type __kmp_mic_type;
3121#endif
3122
3123#ifdef USE_LOAD_BALANCE
3124extern double __kmp_load_balance_interval; // load balance algorithm interval
3125#endif /* USE_LOAD_BALANCE */
3126
3127// OpenMP 3.1 - Nested num threads array
3128typedef struct kmp_nested_nthreads_t {
3129 int *nth;
3130 int size;
3131 int used;
3132} kmp_nested_nthreads_t;
3133
3134extern kmp_nested_nthreads_t __kmp_nested_nth;
3135
3136#if KMP_USE_ADAPTIVE_LOCKS
3137
3138// Parameters for the speculative lock backoff system.
3139struct kmp_adaptive_backoff_params_t {
3140 // Number of soft retries before it counts as a hard retry.
3141 kmp_uint32 max_soft_retries;
3142 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3143 // the right
3144 kmp_uint32 max_badness;
3145};
3146
3147extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3148
3149#if KMP_DEBUG_ADAPTIVE_LOCKS
3150extern const char *__kmp_speculative_statsfile;
3151#endif
3152
3153#endif // KMP_USE_ADAPTIVE_LOCKS
3154
3155extern int __kmp_display_env; /* TRUE or FALSE */
3156extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3157extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3158extern int __kmp_nteams;
3159extern int __kmp_teams_thread_limit;
3160
3161/* ------------------------------------------------------------------------- */
3162
3163/* the following are protected by the fork/join lock */
3164/* write: lock read: anytime */
3165extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3166/* read/write: lock */
3167extern volatile kmp_team_t *__kmp_team_pool;
3168extern volatile kmp_info_t *__kmp_thread_pool;
3169extern kmp_info_t *__kmp_thread_pool_insert_pt;
3170
3171// total num threads reachable from some root thread including all root threads
3172extern volatile int __kmp_nth;
3173/* total number of threads reachable from some root thread including all root
3174 threads, and those in the thread pool */
3175extern volatile int __kmp_all_nth;
3176extern std::atomic<int> __kmp_thread_pool_active_nth;
3177
3178extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3179/* end data protected by fork/join lock */
3180/* ------------------------------------------------------------------------- */
3181
3182#define __kmp_get_gtid() __kmp_get_global_thread_id()
3183#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3184#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3185#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3186#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3187
3188// AT: Which way is correct?
3189// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3190// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3191#define __kmp_get_team_num_threads(gtid) \
3192 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3193
3194static inline bool KMP_UBER_GTID(int gtid) {
3195 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3196 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3197 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3198 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3199}
3200
3201static inline int __kmp_tid_from_gtid(int gtid) {
3202 KMP_DEBUG_ASSERT(gtid >= 0);
3203 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3204}
3205
3206static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3207 KMP_DEBUG_ASSERT(tid >= 0 && team);
3208 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3209}
3210
3211static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3212 KMP_DEBUG_ASSERT(thr);
3213 return thr->th.th_info.ds.ds_gtid;
3214}
3215
3216static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3217 KMP_DEBUG_ASSERT(gtid >= 0);
3218 return __kmp_threads[gtid];
3219}
3220
3221static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3222 KMP_DEBUG_ASSERT(gtid >= 0);
3223 return __kmp_threads[gtid]->th.th_team;
3224}
3225
3226static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3227 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3228 KMP_FATAL(ThreadIdentInvalid);
3229}
3230
3231#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3232extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3233extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3234extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3235extern int __kmp_mwait_hints; // Hints to pass in to mwait
3236#endif
3237
3238/* ------------------------------------------------------------------------- */
3239
3240extern kmp_global_t __kmp_global; /* global status */
3241
3242extern kmp_info_t __kmp_monitor;
3243// For Debugging Support Library
3244extern std::atomic<kmp_int32> __kmp_team_counter;
3245// For Debugging Support Library
3246extern std::atomic<kmp_int32> __kmp_task_counter;
3247
3248#if USE_DEBUGGER
3249#define _KMP_GEN_ID(counter) \
3250 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3251#else
3252#define _KMP_GEN_ID(counter) (~0)
3253#endif /* USE_DEBUGGER */
3254
3255#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3256#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3257
3258/* ------------------------------------------------------------------------ */
3259
3260extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3261 size_t size, char const *format, ...);
3262
3263extern void __kmp_serial_initialize(void);
3264extern void __kmp_middle_initialize(void);
3265extern void __kmp_parallel_initialize(void);
3266
3267extern void __kmp_internal_begin(void);
3268extern void __kmp_internal_end_library(int gtid);
3269extern void __kmp_internal_end_thread(int gtid);
3270extern void __kmp_internal_end_atexit(void);
3271extern void __kmp_internal_end_dtor(void);
3272extern void __kmp_internal_end_dest(void *);
3273
3274extern int __kmp_register_root(int initial_thread);
3275extern void __kmp_unregister_root(int gtid);
3276extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3277
3278extern int __kmp_ignore_mppbeg(void);
3279extern int __kmp_ignore_mppend(void);
3280
3281extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3282extern void __kmp_exit_single(int gtid);
3283
3284extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3285extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3286
3287#ifdef USE_LOAD_BALANCE
3288extern int __kmp_get_load_balance(int);
3289#endif
3290
3291extern int __kmp_get_global_thread_id(void);
3292extern int __kmp_get_global_thread_id_reg(void);
3293extern void __kmp_exit_thread(int exit_status);
3294extern void __kmp_abort(char const *format, ...);
3295extern void __kmp_abort_thread(void);
3296KMP_NORETURN extern void __kmp_abort_process(void);
3297extern void __kmp_warn(char const *format, ...);
3298
3299extern void __kmp_set_num_threads(int new_nth, int gtid);
3300
3301// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3302// registered.
3303static inline kmp_info_t *__kmp_entry_thread() {
3304 int gtid = __kmp_entry_gtid();
3305
3306 return __kmp_threads[gtid];
3307}
3308
3309extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3310extern int __kmp_get_max_active_levels(int gtid);
3311extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3312extern int __kmp_get_team_size(int gtid, int level);
3313extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3314extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3315
3316extern unsigned short __kmp_get_random(kmp_info_t *thread);
3317extern void __kmp_init_random(kmp_info_t *thread);
3318
3319extern kmp_r_sched_t __kmp_get_schedule_global(void);
3320extern void __kmp_adjust_num_threads(int new_nproc);
3321extern void __kmp_check_stksize(size_t *val);
3322
3323extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3324extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3325extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3326#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3327#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3328#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3329
3330#if USE_FAST_MEMORY
3331extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3332 size_t size KMP_SRC_LOC_DECL);
3333extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3334extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3335extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3336#define __kmp_fast_allocate(this_thr, size) \
3337 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3338#define __kmp_fast_free(this_thr, ptr) \
3339 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3340#endif
3341
3342extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3343extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3344 size_t elsize KMP_SRC_LOC_DECL);
3345extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3346 size_t size KMP_SRC_LOC_DECL);
3347extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3348#define __kmp_thread_malloc(th, size) \
3349 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3350#define __kmp_thread_calloc(th, nelem, elsize) \
3351 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3352#define __kmp_thread_realloc(th, ptr, size) \
3353 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3354#define __kmp_thread_free(th, ptr) \
3355 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3356
3357#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3358#define KMP_INTERNAL_FREE(p) free(p)
3359#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3360#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3361
3362extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3363
3364extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3365 kmp_proc_bind_t proc_bind);
3366extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3367 int num_threads);
3368extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3369 int num_teams_ub, int num_threads);
3370
3371extern void __kmp_yield();
3372
3373extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3374 enum sched_type schedule, kmp_int32 lb,
3375 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3376extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3377 enum sched_type schedule, kmp_uint32 lb,
3378 kmp_uint32 ub, kmp_int32 st,
3379 kmp_int32 chunk);
3380extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3381 enum sched_type schedule, kmp_int64 lb,
3382 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3383extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3384 enum sched_type schedule, kmp_uint64 lb,
3385 kmp_uint64 ub, kmp_int64 st,
3386 kmp_int64 chunk);
3387
3388extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3389 kmp_int32 *p_last, kmp_int32 *p_lb,
3390 kmp_int32 *p_ub, kmp_int32 *p_st);
3391extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3392 kmp_int32 *p_last, kmp_uint32 *p_lb,
3393 kmp_uint32 *p_ub, kmp_int32 *p_st);
3394extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3395 kmp_int32 *p_last, kmp_int64 *p_lb,
3396 kmp_int64 *p_ub, kmp_int64 *p_st);
3397extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3398 kmp_int32 *p_last, kmp_uint64 *p_lb,
3399 kmp_uint64 *p_ub, kmp_int64 *p_st);
3400
3401extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3402extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3403extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3404extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3405
3406#ifdef KMP_GOMP_COMPAT
3407
3408extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3409 enum sched_type schedule, kmp_int32 lb,
3410 kmp_int32 ub, kmp_int32 st,
3411 kmp_int32 chunk, int push_ws);
3412extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3413 enum sched_type schedule, kmp_uint32 lb,
3414 kmp_uint32 ub, kmp_int32 st,
3415 kmp_int32 chunk, int push_ws);
3416extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3417 enum sched_type schedule, kmp_int64 lb,
3418 kmp_int64 ub, kmp_int64 st,
3419 kmp_int64 chunk, int push_ws);
3420extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3421 enum sched_type schedule, kmp_uint64 lb,
3422 kmp_uint64 ub, kmp_int64 st,
3423 kmp_int64 chunk, int push_ws);
3424extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3425extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3426extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3427extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3428
3429#endif /* KMP_GOMP_COMPAT */
3430
3431extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3432extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3433extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3434extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3435extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3436extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3437 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3438 void *obj);
3439extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3440 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3441
3442extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3443 int final_spin
3444#if USE_ITT_BUILD
3445 ,
3446 void *itt_sync_obj
3447#endif
3448);
3449extern void __kmp_release_64(kmp_flag_64<> *flag);
3450
3451extern void __kmp_infinite_loop(void);
3452
3453extern void __kmp_cleanup(void);
3454
3455#if KMP_HANDLE_SIGNALS
3456extern int __kmp_handle_signals;
3457extern void __kmp_install_signals(int parallel_init);
3458extern void __kmp_remove_signals(void);
3459#endif
3460
3461extern void __kmp_clear_system_time(void);
3462extern void __kmp_read_system_time(double *delta);
3463
3464extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3465
3466extern void __kmp_expand_host_name(char *buffer, size_t size);
3467extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3468
3469#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3470extern void
3471__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3472#endif
3473
3474extern void
3475__kmp_runtime_initialize(void); /* machine specific initialization */
3476extern void __kmp_runtime_destroy(void);
3477
3478#if KMP_AFFINITY_SUPPORTED
3479extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3480 kmp_affin_mask_t *mask);
3481extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3482 kmp_affin_mask_t *mask);
3483extern void __kmp_affinity_initialize(void);
3484extern void __kmp_affinity_uninitialize(void);
3485extern void __kmp_affinity_set_init_mask(
3486 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3487extern void __kmp_affinity_set_place(int gtid);
3488extern void __kmp_affinity_determine_capable(const char *env_var);
3489extern int __kmp_aux_set_affinity(void **mask);
3490extern int __kmp_aux_get_affinity(void **mask);
3491extern int __kmp_aux_get_affinity_max_proc();
3492extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3493extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3494extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3495extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3496#if KMP_OS_LINUX || KMP_OS_FREEBSD
3497extern int kmp_set_thread_affinity_mask_initial(void);
3498#endif
3499static inline void __kmp_assign_root_init_mask() {
3500 int gtid = __kmp_entry_gtid();
3501 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3502 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3503 __kmp_affinity_set_init_mask(gtid, TRUE);
3504 r->r.r_affinity_assigned = TRUE;
3505 }
3506}
3507#else /* KMP_AFFINITY_SUPPORTED */
3508#define __kmp_assign_root_init_mask() /* Nothing */
3509#endif /* KMP_AFFINITY_SUPPORTED */
3510// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3511// format string is for affinity, so platforms that do not support
3512// affinity can still use the other fields, e.g., %n for num_threads
3513extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3514 kmp_str_buf_t *buffer);
3515extern void __kmp_aux_display_affinity(int gtid, const char *format);
3516
3517extern void __kmp_cleanup_hierarchy();
3518extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3519
3520#if KMP_USE_FUTEX
3521
3522extern int __kmp_futex_determine_capable(void);
3523
3524#endif // KMP_USE_FUTEX
3525
3526extern void __kmp_gtid_set_specific(int gtid);
3527extern int __kmp_gtid_get_specific(void);
3528
3529extern double __kmp_read_cpu_time(void);
3530
3531extern int __kmp_read_system_info(struct kmp_sys_info *info);
3532
3533#if KMP_USE_MONITOR
3534extern void __kmp_create_monitor(kmp_info_t *th);
3535#endif
3536
3537extern void *__kmp_launch_thread(kmp_info_t *thr);
3538
3539extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3540
3541#if KMP_OS_WINDOWS
3542extern int __kmp_still_running(kmp_info_t *th);
3543extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3544extern void __kmp_free_handle(kmp_thread_t tHandle);
3545#endif
3546
3547#if KMP_USE_MONITOR
3548extern void __kmp_reap_monitor(kmp_info_t *th);
3549#endif
3550extern void __kmp_reap_worker(kmp_info_t *th);
3551extern void __kmp_terminate_thread(int gtid);
3552
3553extern int __kmp_try_suspend_mx(kmp_info_t *th);
3554extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3555extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3556
3557extern void __kmp_elapsed(double *);
3558extern void __kmp_elapsed_tick(double *);
3559
3560extern void __kmp_enable(int old_state);
3561extern void __kmp_disable(int *old_state);
3562
3563extern void __kmp_thread_sleep(int millis);
3564
3565extern void __kmp_common_initialize(void);
3566extern void __kmp_common_destroy(void);
3567extern void __kmp_common_destroy_gtid(int gtid);
3568
3569#if KMP_OS_UNIX
3570extern void __kmp_register_atfork(void);
3571#endif
3572extern void __kmp_suspend_initialize(void);
3573extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3574extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3575
3576extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3577 int tid);
3578extern kmp_team_t *
3579__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3580#if OMPT_SUPPORT
3581 ompt_data_t ompt_parallel_data,
3582#endif
3583 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3584 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3585extern void __kmp_free_thread(kmp_info_t *);
3586extern void __kmp_free_team(kmp_root_t *,
3587 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3588extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3589
3590/* ------------------------------------------------------------------------ */
3591
3592extern void __kmp_initialize_bget(kmp_info_t *th);
3593extern void __kmp_finalize_bget(kmp_info_t *th);
3594
3595KMP_EXPORT void *kmpc_malloc(size_t size);
3596KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3597KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3598KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3599KMP_EXPORT void kmpc_free(void *ptr);
3600
3601/* declarations for internal use */
3602
3603extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3604 size_t reduce_size, void *reduce_data,
3605 void (*reduce)(void *, void *));
3606extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3607extern int __kmp_barrier_gomp_cancel(int gtid);
3608
3613enum fork_context_e {
3614 fork_context_gnu,
3616 fork_context_intel,
3617 fork_context_last
3618};
3619extern int __kmp_fork_call(ident_t *loc, int gtid,
3620 enum fork_context_e fork_context, kmp_int32 argc,
3621 microtask_t microtask, launch_t invoker,
3622 kmp_va_list ap);
3623
3624extern void __kmp_join_call(ident_t *loc, int gtid
3625#if OMPT_SUPPORT
3626 ,
3627 enum fork_context_e fork_context
3628#endif
3629 ,
3630 int exit_teams = 0);
3631
3632extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3633extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3634extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3635extern int __kmp_invoke_task_func(int gtid);
3636extern void __kmp_run_before_invoked_task(int gtid, int tid,
3637 kmp_info_t *this_thr,
3638 kmp_team_t *team);
3639extern void __kmp_run_after_invoked_task(int gtid, int tid,
3640 kmp_info_t *this_thr,
3641 kmp_team_t *team);
3642
3643// should never have been exported
3644KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3645extern int __kmp_invoke_teams_master(int gtid);
3646extern void __kmp_teams_master(int gtid);
3647extern int __kmp_aux_get_team_num();
3648extern int __kmp_aux_get_num_teams();
3649extern void __kmp_save_internal_controls(kmp_info_t *thread);
3650extern void __kmp_user_set_library(enum library_type arg);
3651extern void __kmp_aux_set_library(enum library_type arg);
3652extern void __kmp_aux_set_stacksize(size_t arg);
3653extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3654extern void __kmp_aux_set_defaults(char const *str, size_t len);
3655
3656/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3657void kmpc_set_blocktime(int arg);
3658void ompc_set_nested(int flag);
3659void ompc_set_dynamic(int flag);
3660void ompc_set_num_threads(int arg);
3661
3662extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3663 kmp_team_t *team, int tid);
3664extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3665extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3666 kmp_tasking_flags_t *flags,
3667 size_t sizeof_kmp_task_t,
3668 size_t sizeof_shareds,
3669 kmp_routine_entry_t task_entry);
3670extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3671 kmp_team_t *team, int tid,
3672 int set_curr_task);
3673extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3674extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3675
3676extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3677 int gtid,
3678 kmp_task_t *task);
3679extern void __kmp_fulfill_event(kmp_event_t *event);
3680
3681extern void __kmp_free_task_team(kmp_info_t *thread,
3682 kmp_task_team_t *task_team);
3683extern void __kmp_reap_task_teams(void);
3684extern void __kmp_wait_to_unref_task_teams(void);
3685extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3686 int always);
3687extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3688extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3689#if USE_ITT_BUILD
3690 ,
3691 void *itt_sync_obj
3692#endif /* USE_ITT_BUILD */
3693 ,
3694 int wait = 1);
3695extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3696 int gtid);
3697
3698extern int __kmp_is_address_mapped(void *addr);
3699extern kmp_uint64 __kmp_hardware_timestamp(void);
3700
3701#if KMP_OS_UNIX
3702extern int __kmp_read_from_file(char const *path, char const *format, ...);
3703#endif
3704
3705/* ------------------------------------------------------------------------ */
3706//
3707// Assembly routines that have no compiler intrinsic replacement
3708//
3709
3710extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3711 void *argv[]
3712#if OMPT_SUPPORT
3713 ,
3714 void **exit_frame_ptr
3715#endif
3716);
3717
3718/* ------------------------------------------------------------------------ */
3719
3720KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3721KMP_EXPORT void __kmpc_end(ident_t *);
3722
3723KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3724 kmpc_ctor_vec ctor,
3725 kmpc_cctor_vec cctor,
3726 kmpc_dtor_vec dtor,
3727 size_t vector_length);
3728KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3729 kmpc_ctor ctor, kmpc_cctor cctor,
3730 kmpc_dtor dtor);
3731KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3732 void *data, size_t size);
3733
3734KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3735KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3736KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3737KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3738
3739KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3740KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3741 kmpc_micro microtask, ...);
3742
3743KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3744KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3745
3746KMP_EXPORT void __kmpc_flush(ident_t *);
3747KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3748KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3749KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3750KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3751 kmp_int32 filter);
3752KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3753KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3754KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3755KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3756 kmp_critical_name *);
3757KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3758 kmp_critical_name *);
3759KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3760 kmp_critical_name *, uint32_t hint);
3761
3762KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3763KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3764
3765KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3766 kmp_int32 global_tid);
3767
3768KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3769KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3770
3771KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3772 kmp_int32 schedtype, kmp_int32 *plastiter,
3773 kmp_int *plower, kmp_int *pupper,
3774 kmp_int *pstride, kmp_int incr,
3775 kmp_int chunk);
3776
3777KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3778
3779KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3780 size_t cpy_size, void *cpy_data,
3781 void (*cpy_func)(void *, void *),
3782 kmp_int32 didit);
3783
3784extern void KMPC_SET_NUM_THREADS(int arg);
3785extern void KMPC_SET_DYNAMIC(int flag);
3786extern void KMPC_SET_NESTED(int flag);
3787
3788/* OMP 3.0 tasking interface routines */
3789KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3790 kmp_task_t *new_task);
3791KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3792 kmp_int32 flags,
3793 size_t sizeof_kmp_task_t,
3794 size_t sizeof_shareds,
3795 kmp_routine_entry_t task_entry);
3796KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3797 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3798 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3799KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3800 kmp_task_t *task);
3801KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3802 kmp_task_t *task);
3803KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3804 kmp_task_t *new_task);
3805KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3806
3807KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3808 int end_part);
3809
3810#if TASK_UNUSED
3811void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3812void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3813 kmp_task_t *task);
3814#endif // TASK_UNUSED
3815
3816/* ------------------------------------------------------------------------ */
3817
3818KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3819KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3820
3821KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3822 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3823 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3824 kmp_depend_info_t *noalias_dep_list);
3825KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3826 kmp_int32 ndeps,
3827 kmp_depend_info_t *dep_list,
3828 kmp_int32 ndeps_noalias,
3829 kmp_depend_info_t *noalias_dep_list);
3830extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3831 bool serialize_immediate);
3832
3833KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3834 kmp_int32 cncl_kind);
3835KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3836 kmp_int32 cncl_kind);
3837KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3838KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3839
3840KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3841KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3842KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3843 kmp_int32 if_val, kmp_uint64 *lb,
3844 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3845 kmp_int32 sched, kmp_uint64 grainsize,
3846 void *task_dup);
3847KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3848 kmp_task_t *task, kmp_int32 if_val,
3849 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3850 kmp_int32 nogroup, kmp_int32 sched,
3851 kmp_uint64 grainsize, kmp_int32 modifier,
3852 void *task_dup);
3853KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3854KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3855KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3856KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3857 int is_ws, int num,
3858 void *data);
3859KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3860 int num, void *data);
3861KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3862 int is_ws);
3863KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3864 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3865 kmp_task_affinity_info_t *affin_list);
3866KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3867KMP_EXPORT int __kmp_get_max_teams(void);
3868KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3869KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3870
3871/* Lock interface routines (fast versions with gtid passed in) */
3872KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3873 void **user_lock);
3874KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3875 void **user_lock);
3876KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3877 void **user_lock);
3878KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3879 void **user_lock);
3880KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3881KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3882 void **user_lock);
3883KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3884 void **user_lock);
3885KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3886 void **user_lock);
3887KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3888KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3889 void **user_lock);
3890
3891KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3892 void **user_lock, uintptr_t hint);
3893KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3894 void **user_lock,
3895 uintptr_t hint);
3896
3897/* Interface to fast scalable reduce methods routines */
3898
3899KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3900 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3901 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3902 kmp_critical_name *lck);
3903KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3904 kmp_critical_name *lck);
3905KMP_EXPORT kmp_int32 __kmpc_reduce(
3906 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3907 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3908 kmp_critical_name *lck);
3909KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3910 kmp_critical_name *lck);
3911
3912/* Internal fast reduction routines */
3913
3914extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3915 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3916 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3917 kmp_critical_name *lck);
3918
3919// this function is for testing set/get/determine reduce method
3920KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3921
3922KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3923KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3924
3925// C++ port
3926// missing 'extern "C"' declarations
3927
3928KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3929KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3930KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3931 kmp_int32 num_threads);
3932
3933KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3934 int proc_bind);
3935KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3936 kmp_int32 num_teams,
3937 kmp_int32 num_threads);
3938/* Function for OpenMP 5.1 num_teams clause */
3939KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
3940 kmp_int32 num_teams_lb,
3941 kmp_int32 num_teams_ub,
3942 kmp_int32 num_threads);
3943KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3944 kmpc_micro microtask, ...);
3945struct kmp_dim { // loop bounds info casted to kmp_int64
3946 kmp_int64 lo; // lower
3947 kmp_int64 up; // upper
3948 kmp_int64 st; // stride
3949};
3950KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3951 kmp_int32 num_dims,
3952 const struct kmp_dim *dims);
3953KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3954 const kmp_int64 *vec);
3955KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3956 const kmp_int64 *vec);
3957KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3958
3959KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3960 void *data, size_t size,
3961 void ***cache);
3962
3963// Symbols for MS mutual detection.
3964extern int _You_must_link_with_exactly_one_OpenMP_library;
3965extern int _You_must_link_with_Intel_OpenMP_library;
3966#if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3967extern int _You_must_link_with_Microsoft_OpenMP_library;
3968#endif
3969
3970// The routines below are not exported.
3971// Consider making them 'static' in corresponding source files.
3972void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3973 void *data_addr, size_t pc_size);
3974struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3975 void *data_addr,
3976 size_t pc_size);
3977void __kmp_threadprivate_resize_cache(int newCapacity);
3978void __kmp_cleanup_threadprivate_caches();
3979
3980// ompc_, kmpc_ entries moved from omp.h.
3981#if KMP_OS_WINDOWS
3982#define KMPC_CONVENTION __cdecl
3983#else
3984#define KMPC_CONVENTION
3985#endif
3986
3987#ifndef __OMP_H
3988typedef enum omp_sched_t {
3989 omp_sched_static = 1,
3990 omp_sched_dynamic = 2,
3991 omp_sched_guided = 3,
3992 omp_sched_auto = 4
3993} omp_sched_t;
3994typedef void *kmp_affinity_mask_t;
3995#endif
3996
3997KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3998KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3999KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4000KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4001KMP_EXPORT int KMPC_CONVENTION
4002kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4003KMP_EXPORT int KMPC_CONVENTION
4004kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4005KMP_EXPORT int KMPC_CONVENTION
4006kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4007
4008KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4009KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4010KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4011KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4012KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4013void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4014size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4015void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4016size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4017 char const *format);
4018
4019enum kmp_target_offload_kind {
4020 tgt_disabled = 0,
4021 tgt_default = 1,
4022 tgt_mandatory = 2
4023};
4024typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4025// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4026extern kmp_target_offload_kind_t __kmp_target_offload;
4027extern int __kmpc_get_target_offload();
4028
4029// Constants used in libomptarget
4030#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4031#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4032
4033// OMP Pause Resource
4034
4035// The following enum is used both to set the status in __kmp_pause_status, and
4036// as the internal equivalent of the externally-visible omp_pause_resource_t.
4037typedef enum kmp_pause_status_t {
4038 kmp_not_paused = 0, // status is not paused, or, requesting resume
4039 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4040 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4041} kmp_pause_status_t;
4042
4043// This stores the pause state of the runtime
4044extern kmp_pause_status_t __kmp_pause_status;
4045extern int __kmpc_pause_resource(kmp_pause_status_t level);
4046extern int __kmp_pause_resource(kmp_pause_status_t level);
4047// Soft resume sets __kmp_pause_status, and wakes up all threads.
4048extern void __kmp_resume_if_soft_paused();
4049// Hard resume simply resets the status to not paused. Library will appear to
4050// be uninitialized after hard pause. Let OMP constructs trigger required
4051// initializations.
4052static inline void __kmp_resume_if_hard_paused() {
4053 if (__kmp_pause_status == kmp_hard_paused) {
4054 __kmp_pause_status = kmp_not_paused;
4055 }
4056}
4057
4058extern void __kmp_omp_display_env(int verbose);
4059
4060// 1: it is initializing hidden helper team
4061extern volatile int __kmp_init_hidden_helper;
4062// 1: the hidden helper team is done
4063extern volatile int __kmp_hidden_helper_team_done;
4064// 1: enable hidden helper task
4065extern kmp_int32 __kmp_enable_hidden_helper;
4066// Main thread of hidden helper team
4067extern kmp_info_t *__kmp_hidden_helper_main_thread;
4068// Descriptors for the hidden helper threads
4069extern kmp_info_t **__kmp_hidden_helper_threads;
4070// Number of hidden helper threads
4071extern kmp_int32 __kmp_hidden_helper_threads_num;
4072// Number of hidden helper tasks that have not been executed yet
4073extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4074
4075extern void __kmp_hidden_helper_initialize();
4076extern void __kmp_hidden_helper_threads_initz_routine();
4077extern void __kmp_do_initialize_hidden_helper_threads();
4078extern void __kmp_hidden_helper_threads_initz_wait();
4079extern void __kmp_hidden_helper_initz_release();
4080extern void __kmp_hidden_helper_threads_deinitz_wait();
4081extern void __kmp_hidden_helper_threads_deinitz_release();
4082extern void __kmp_hidden_helper_main_thread_wait();
4083extern void __kmp_hidden_helper_worker_thread_wait();
4084extern void __kmp_hidden_helper_worker_thread_signal();
4085extern void __kmp_hidden_helper_main_thread_release();
4086
4087// Check whether a given thread is a hidden helper thread
4088#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4089 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4090
4091#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4092 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4093
4094#define KMP_HIDDEN_HELPER_TEAM(team) \
4095 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4096
4097// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4098// main thread, is skipped.
4099#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4100 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4101
4102// Return the adjusted gtid value by subtracting from gtid the number
4103// of hidden helper threads. This adjusted value is the gtid the thread would
4104// have received if there were no hidden helper threads.
4105static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4106 int adjusted_gtid = gtid;
4107 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4108 gtid - __kmp_hidden_helper_threads_num >= 0) {
4109 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4110 }
4111 return adjusted_gtid;
4112}
4113
4114// Support for error directive
4115typedef enum kmp_severity_t {
4116 severity_warning = 1,
4117 severity_fatal = 2
4118} kmp_severity_t;
4119extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4120
4121#ifdef __cplusplus
4122}
4123#endif
4124
4125template <bool C, bool S>
4126extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4127template <bool C, bool S>
4128extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4129extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4130#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4131template <bool C, bool S>
4132extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4133template <bool C, bool S>
4134extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4135extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4136#endif
4137template <bool C, bool S>
4138extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4139template <bool C, bool S>
4140extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4141extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4142
4143template <bool C, bool S>
4144int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4145 kmp_flag_32<C, S> *flag, int final_spin,
4146 int *thread_finished,
4147#if USE_ITT_BUILD
4148 void *itt_sync_obj,
4149#endif /* USE_ITT_BUILD */
4150 kmp_int32 is_constrained);
4151template <bool C, bool S>
4152int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4153 kmp_flag_64<C, S> *flag, int final_spin,
4154 int *thread_finished,
4155#if USE_ITT_BUILD
4156 void *itt_sync_obj,
4157#endif /* USE_ITT_BUILD */
4158 kmp_int32 is_constrained);
4159int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4160 kmp_flag_oncore *flag, int final_spin,
4161 int *thread_finished,
4162#if USE_ITT_BUILD
4163 void *itt_sync_obj,
4164#endif /* USE_ITT_BUILD */
4165 kmp_int32 is_constrained);
4166
4167extern int __kmp_nesting_mode;
4168extern int __kmp_nesting_mode_nlevels;
4169extern int *__kmp_nesting_nth_level;
4170extern void __kmp_init_nesting_mode();
4171extern void __kmp_set_nesting_mode_threads();
4172
4180 FILE *f;
4181
4182 void close() {
4183 if (f && f != stdout && f != stderr) {
4184 fclose(f);
4185 f = nullptr;
4186 }
4187 }
4188
4189public:
4190 kmp_safe_raii_file_t() : f(nullptr) {}
4191 kmp_safe_raii_file_t(const char *filename, const char *mode,
4192 const char *env_var = nullptr)
4193 : f(nullptr) {
4194 open(filename, mode, env_var);
4195 }
4196 ~kmp_safe_raii_file_t() { close(); }
4197
4201 void open(const char *filename, const char *mode,
4202 const char *env_var = nullptr) {
4203 KMP_ASSERT(!f);
4204 f = fopen(filename, mode);
4205 if (!f) {
4206 int code = errno;
4207 if (env_var) {
4208 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4209 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4210 } else {
4211 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4212 __kmp_msg_null);
4213 }
4214 }
4215 }
4218 void set_stdout() {
4219 KMP_ASSERT(!f);
4220 f = stdout;
4221 }
4224 void set_stderr() {
4225 KMP_ASSERT(!f);
4226 f = stderr;
4227 }
4228 operator bool() { return bool(f); }
4229 operator FILE *() { return f; }
4230};
4231
4232template <typename SourceType, typename TargetType,
4233 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4234 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4235 bool isSourceSigned = std::is_signed<SourceType>::value,
4236 bool isTargetSigned = std::is_signed<TargetType>::value>
4237struct kmp_convert {};
4238
4239// Both types are signed; Source smaller
4240template <typename SourceType, typename TargetType>
4241struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4242 static TargetType to(SourceType src) { return (TargetType)src; }
4243};
4244// Source equal
4245template <typename SourceType, typename TargetType>
4246struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4247 static TargetType to(SourceType src) { return src; }
4248};
4249// Source bigger
4250template <typename SourceType, typename TargetType>
4251struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4252 static TargetType to(SourceType src) {
4253 KMP_ASSERT(src <= static_cast<SourceType>(
4254 (std::numeric_limits<TargetType>::max)()));
4255 KMP_ASSERT(src >= static_cast<SourceType>(
4256 (std::numeric_limits<TargetType>::min)()));
4257 return (TargetType)src;
4258 }
4259};
4260
4261// Source signed, Target unsigned
4262// Source smaller
4263template <typename SourceType, typename TargetType>
4264struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4265 static TargetType to(SourceType src) {
4266 KMP_ASSERT(src >= 0);
4267 return (TargetType)src;
4268 }
4269};
4270// Source equal
4271template <typename SourceType, typename TargetType>
4272struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4273 static TargetType to(SourceType src) {
4274 KMP_ASSERT(src >= 0);
4275 return (TargetType)src;
4276 }
4277};
4278// Source bigger
4279template <typename SourceType, typename TargetType>
4280struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4281 static TargetType to(SourceType src) {
4282 KMP_ASSERT(src >= 0);
4283 KMP_ASSERT(src <= static_cast<SourceType>(
4284 (std::numeric_limits<TargetType>::max)()));
4285 return (TargetType)src;
4286 }
4287};
4288
4289// Source unsigned, Target signed
4290// Source smaller
4291template <typename SourceType, typename TargetType>
4292struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4293 static TargetType to(SourceType src) { return (TargetType)src; }
4294};
4295// Source equal
4296template <typename SourceType, typename TargetType>
4297struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4298 static TargetType to(SourceType src) {
4299 KMP_ASSERT(src <= static_cast<SourceType>(
4300 (std::numeric_limits<TargetType>::max)()));
4301 return (TargetType)src;
4302 }
4303};
4304// Source bigger
4305template <typename SourceType, typename TargetType>
4306struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4307 static TargetType to(SourceType src) {
4308 KMP_ASSERT(src <= static_cast<SourceType>(
4309 (std::numeric_limits<TargetType>::max)()));
4310 return (TargetType)src;
4311 }
4312};
4313
4314// Source unsigned, Target unsigned
4315// Source smaller
4316template <typename SourceType, typename TargetType>
4317struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4318 static TargetType to(SourceType src) { return (TargetType)src; }
4319};
4320// Source equal
4321template <typename SourceType, typename TargetType>
4322struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4323 static TargetType to(SourceType src) { return src; }
4324};
4325// Source bigger
4326template <typename SourceType, typename TargetType>
4327struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4328 static TargetType to(SourceType src) {
4329 KMP_ASSERT(src <= static_cast<SourceType>(
4330 (std::numeric_limits<TargetType>::max)()));
4331 return (TargetType)src;
4332 }
4333};
4334
4335template <typename T1, typename T2>
4336static inline void __kmp_type_convert(T1 src, T2 *dest) {
4337 *dest = kmp_convert<T1, T2>::to(src);
4338}
4339
4340#endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4218
void set_stderr()
Definition: kmp.h:4224
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4201
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:195
@ KMP_IDENT_IMB
Definition: kmp.h:193
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:213
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:204
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:215
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:198
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:222
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:217
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:202
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:200
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1522
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1546
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1553
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1575
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1540
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1563
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1569
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:355
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:406
@ kmp_sch_runtime_simd
Definition: kmp.h:377
@ kmp_nm_ord_auto
Definition: kmp.h:425
@ kmp_sch_auto
Definition: kmp.h:362
@ kmp_nm_auto
Definition: kmp.h:408
@ kmp_distribute_static_chunked
Definition: kmp.h:393
@ kmp_sch_static
Definition: kmp.h:358
@ kmp_sch_guided_simd
Definition: kmp.h:376
@ kmp_sch_modifier_monotonic
Definition: kmp.h:443
@ kmp_sch_default
Definition: kmp.h:463
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:445
@ kmp_nm_ord_static
Definition: kmp.h:421
@ kmp_distribute_static
Definition: kmp.h:394
@ kmp_sch_guided_chunked
Definition: kmp.h:360
@ kmp_nm_static
Definition: kmp.h:404
@ kmp_sch_lower
Definition: kmp.h:356
@ kmp_nm_upper
Definition: kmp.h:427
@ kmp_ord_lower
Definition: kmp.h:382
@ kmp_ord_static
Definition: kmp.h:384
@ kmp_sch_upper
Definition: kmp.h:380
@ kmp_ord_upper
Definition: kmp.h:390
@ kmp_nm_lower
Definition: kmp.h:400
@ kmp_ord_auto
Definition: kmp.h:388
Definition: kmp.h:233
kmp_int32 reserved_1
Definition: kmp.h:234
char const * psource
Definition: kmp.h:243
kmp_int32 reserved_2
Definition: kmp.h:237
kmp_int32 reserved_3
Definition: kmp.h:242
kmp_int32 flags
Definition: kmp.h:235