LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 
192 enum {
197  /* 0x04 is no longer used */
206  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209 
210  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212 
224  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229 };
230 
234 typedef struct ident {
235  kmp_int32 reserved_1;
236  kmp_int32 flags;
238  kmp_int32 reserved_2;
239 #if USE_ITT_BUILD
240 /* but currently used for storing region-specific ITT */
241 /* contextual information. */
242 #endif /* USE_ITT_BUILD */
243  kmp_int32 reserved_3;
244  char const *psource;
248  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249  kmp_int32 get_openmp_version() {
250  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251  }
257 // Some forward declarations.
258 typedef union kmp_team kmp_team_t;
259 typedef struct kmp_taskdata kmp_taskdata_t;
260 typedef union kmp_task_team kmp_task_team_t;
261 typedef union kmp_team kmp_team_p;
262 typedef union kmp_info kmp_info_p;
263 typedef union kmp_root kmp_root_p;
264 
265 template <bool C = false, bool S = true> class kmp_flag_32;
266 template <bool C = false, bool S = true> class kmp_flag_64;
267 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268 class kmp_flag_oncore;
269 
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273 
274 /* ------------------------------------------------------------------------ */
275 
276 /* Pack two 32-bit signed integers into a 64-bit signed integer */
277 /* ToDo: Fix word ordering for big-endian machines. */
278 #define KMP_PACK_64(HIGH_32, LOW_32) \
279  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280 
281 // Generic string manipulation macros. Assume that _x is of type char *
282 #define SKIP_WS(_x) \
283  { \
284  while (*(_x) == ' ' || *(_x) == '\t') \
285  (_x)++; \
286  }
287 #define SKIP_DIGITS(_x) \
288  { \
289  while (*(_x) >= '0' && *(_x) <= '9') \
290  (_x)++; \
291  }
292 #define SKIP_TOKEN(_x) \
293  { \
294  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296  (_x)++; \
297  }
298 #define SKIP_TO(_x, _c) \
299  { \
300  while (*(_x) != '\0' && *(_x) != (_c)) \
301  (_x)++; \
302  }
303 
304 /* ------------------------------------------------------------------------ */
305 
306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308 
309 /* ------------------------------------------------------------------------ */
310 /* Enumeration types */
311 
312 enum kmp_state_timer {
313  ts_stop,
314  ts_start,
315  ts_pause,
316 
317  ts_last_state
318 };
319 
320 enum dynamic_mode {
321  dynamic_default,
322 #ifdef USE_LOAD_BALANCE
323  dynamic_load_balance,
324 #endif /* USE_LOAD_BALANCE */
325  dynamic_random,
326  dynamic_thread_limit,
327  dynamic_max
328 };
329 
330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
331  * not include it here */
332 #ifndef KMP_SCHED_TYPE_DEFINED
333 #define KMP_SCHED_TYPE_DEFINED
334 typedef enum kmp_sched {
335  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336  // Note: need to adjust __kmp_sch_map global array in case enum is changed
337  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341  kmp_sched_upper_std = 5, // upper bound for standard schedules
342  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344 #if KMP_STATIC_STEAL_ENABLED
345  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346 #endif
347  kmp_sched_upper,
348  kmp_sched_default = kmp_sched_static, // default scheduling
349  kmp_sched_monotonic = 0x80000000
350 } kmp_sched_t;
351 #endif
352 
357 enum sched_type : kmp_int32 {
359  kmp_sch_static_chunked = 33,
361  kmp_sch_dynamic_chunked = 35,
363  kmp_sch_runtime = 37,
365  kmp_sch_trapezoidal = 39,
366 
367  /* accessible only through KMP_SCHEDULE environment variable */
368  kmp_sch_static_greedy = 40,
369  kmp_sch_static_balanced = 41,
370  /* accessible only through KMP_SCHEDULE environment variable */
371  kmp_sch_guided_iterative_chunked = 42,
372  kmp_sch_guided_analytical_chunked = 43,
373  /* accessible only through KMP_SCHEDULE environment variable */
374  kmp_sch_static_steal = 44,
375 
376  /* static with chunk adjustment (e.g., simd) */
377  kmp_sch_static_balanced_chunked = 45,
381  /* accessible only through KMP_SCHEDULE environment variable */
385  kmp_ord_static_chunked = 65,
387  kmp_ord_dynamic_chunked = 67,
388  kmp_ord_guided_chunked = 68,
389  kmp_ord_runtime = 69,
391  kmp_ord_trapezoidal = 71,
394  /* Schedules for Distribute construct */
398  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399  single iteration/chunk, even if the loop is serialized. For the schedule
400  types listed above, the entire iteration vector is returned if the loop is
401  serialized. This doesn't work for gcc/gcomp sections. */
402  kmp_nm_lower = 160,
404  kmp_nm_static_chunked =
405  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407  kmp_nm_dynamic_chunked = 163,
409  kmp_nm_runtime = 165,
410  kmp_nm_auto = 166,
411  kmp_nm_trapezoidal = 167,
412 
413  /* accessible only through KMP_SCHEDULE environment variable */
414  kmp_nm_static_greedy = 168,
415  kmp_nm_static_balanced = 169,
416  /* accessible only through KMP_SCHEDULE environment variable */
417  kmp_nm_guided_iterative_chunked = 170,
418  kmp_nm_guided_analytical_chunked = 171,
419  kmp_nm_static_steal =
420  172, /* accessible only through OMP_SCHEDULE environment variable */
421 
422  kmp_nm_ord_static_chunked = 193,
424  kmp_nm_ord_dynamic_chunked = 195,
425  kmp_nm_ord_guided_chunked = 196,
426  kmp_nm_ord_runtime = 197,
428  kmp_nm_ord_trapezoidal = 199,
431  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432  we need to distinguish the three possible cases (no modifier, monotonic
433  modifier, nonmonotonic modifier), we need separate bits for each modifier.
434  The absence of monotonic does not imply nonmonotonic, especially since 4.5
435  says that the behaviour of the "no modifier" case is implementation defined
436  in 4.5, but will become "nonmonotonic" in 5.0.
437 
438  Since we're passing a full 32 bit value, we can use a couple of high bits
439  for these flags; out of paranoia we avoid the sign bit.
440 
441  These modifiers can be or-ed into non-static schedules by the compiler to
442  pass the additional information. They will be stripped early in the
443  processing in __kmp_dispatch_init when setting up schedules, so most of the
444  code won't ever see schedules with these bits set. */
446  (1 << 29),
448  (1 << 30),
450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
451  (enum sched_type)( \
453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
456  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457 #define SCHEDULE_GET_MODIFIERS(s) \
458  ((enum sched_type)( \
459  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460 #define SCHEDULE_SET_MODIFIERS(s, m) \
461  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462 #define SCHEDULE_NONMONOTONIC 0
463 #define SCHEDULE_MONOTONIC 1
464 
466 };
467 
468 // Apply modifiers on internal kind to standard kind
469 static inline void
470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471  enum sched_type internal_kind) {
472  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474  }
475 }
476 
477 // Apply modifiers on standard kind to internal kind
478 static inline void
479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480  enum sched_type *internal_kind) {
481  if ((int)kind & (int)kmp_sched_monotonic) {
482  *internal_kind = (enum sched_type)((int)*internal_kind |
484  }
485 }
486 
487 // Get standard schedule without modifiers
488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490 }
491 
492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493 typedef union kmp_r_sched {
494  struct {
495  enum sched_type r_sched_type;
496  int chunk;
497  };
498  kmp_int64 sched;
499 } kmp_r_sched_t;
500 
501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502 // internal schedule types
503 
504 enum library_type {
505  library_none,
506  library_serial,
507  library_turnaround,
508  library_throughput
509 };
510 
511 #if KMP_OS_LINUX
512 enum clock_function_type {
513  clock_function_gettimeofday,
514  clock_function_clock_gettime
515 };
516 #endif /* KMP_OS_LINUX */
517 
518 #if KMP_MIC_SUPPORTED
519 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520 #endif
521 
522 /* -- fast reduction stuff ------------------------------------------------ */
523 
524 #undef KMP_FAST_REDUCTION_BARRIER
525 #define KMP_FAST_REDUCTION_BARRIER 1
526 
527 #undef KMP_FAST_REDUCTION_CORE_DUO
528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
529 #define KMP_FAST_REDUCTION_CORE_DUO 1
530 #endif
531 
532 enum _reduction_method {
533  reduction_method_not_defined = 0,
534  critical_reduce_block = (1 << 8),
535  atomic_reduce_block = (2 << 8),
536  tree_reduce_block = (3 << 8),
537  empty_reduce_block = (4 << 8)
538 };
539 
540 // Description of the packed_reduction_method variable:
541 // The packed_reduction_method variable consists of two enum types variables
542 // that are packed together into 0-th byte and 1-st byte:
543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544 // barrier that will be used in fast reduction: bs_plain_barrier or
545 // bs_reduction_barrier
546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547 // be used in fast reduction;
548 // Reduction method is of 'enum _reduction_method' type and it's defined the way
549 // so that the bits of 0-th byte are empty, so no need to execute a shift
550 // instruction while packing/unpacking
551 
552 #if KMP_FAST_REDUCTION_BARRIER
553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554  ((reduction_method) | (barrier_type))
555 
556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558 
559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561 #else
562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563  (reduction_method)
564 
565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566  (packed_reduction_method)
567 
568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569 #endif
570 
571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573  (which_reduction_block))
574 
575 #if KMP_FAST_REDUCTION_BARRIER
576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578 
579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581 #endif
582 
583 typedef int PACKED_REDUCTION_METHOD_T;
584 
585 /* -- end of fast reduction stuff ----------------------------------------- */
586 
587 #if KMP_OS_WINDOWS
588 #define USE_CBLKDATA
589 #if KMP_MSVC_COMPAT
590 #pragma warning(push)
591 #pragma warning(disable : 271 310)
592 #endif
593 #include <windows.h>
594 #if KMP_MSVC_COMPAT
595 #pragma warning(pop)
596 #endif
597 #endif
598 
599 #if KMP_OS_UNIX
600 #include <dlfcn.h>
601 #include <pthread.h>
602 #endif
603 
604 enum kmp_hw_t : int {
605  KMP_HW_UNKNOWN = -1,
606  KMP_HW_SOCKET = 0,
607  KMP_HW_PROC_GROUP,
608  KMP_HW_NUMA,
609  KMP_HW_DIE,
610  KMP_HW_LLC,
611  KMP_HW_L3,
612  KMP_HW_TILE,
613  KMP_HW_MODULE,
614  KMP_HW_L2,
615  KMP_HW_L1,
616  KMP_HW_CORE,
617  KMP_HW_THREAD,
618  KMP_HW_LAST
619 };
620 
621 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
622  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
623 #define KMP_ASSERT_VALID_HW_TYPE(type) \
624  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
625 
626 #define KMP_FOREACH_HW_TYPE(type) \
627  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
628  type = (kmp_hw_t)((int)type + 1))
629 
630 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
631 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
632 
633 /* Only Linux* OS and Windows* OS support thread affinity. */
634 #if KMP_AFFINITY_SUPPORTED
635 
636 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
637 #if KMP_OS_WINDOWS
638 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
639 typedef struct GROUP_AFFINITY {
640  KAFFINITY Mask;
641  WORD Group;
642  WORD Reserved[3];
643 } GROUP_AFFINITY;
644 #endif /* _MSC_VER < 1600 */
645 #if KMP_GROUP_AFFINITY
646 extern int __kmp_num_proc_groups;
647 #else
648 static const int __kmp_num_proc_groups = 1;
649 #endif /* KMP_GROUP_AFFINITY */
650 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
651 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
652 
653 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
654 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
655 
656 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
657 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
658 
659 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
660  GROUP_AFFINITY *);
661 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
662 #endif /* KMP_OS_WINDOWS */
663 
664 #if KMP_USE_HWLOC
665 extern hwloc_topology_t __kmp_hwloc_topology;
666 extern int __kmp_hwloc_error;
667 #endif
668 
669 extern size_t __kmp_affin_mask_size;
670 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
671 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
672 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
673 #define KMP_CPU_SET_ITERATE(i, mask) \
674  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
675 #define KMP_CPU_SET(i, mask) (mask)->set(i)
676 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
677 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
678 #define KMP_CPU_ZERO(mask) (mask)->zero()
679 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
680 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
681 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
682 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
683 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
684 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
685 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
686 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
687 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
688 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
689 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
690 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
691  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
692 #define KMP_CPU_FREE_ARRAY(arr, n) \
693  __kmp_affinity_dispatch->deallocate_mask_array(arr)
694 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
695 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
696 #define __kmp_get_system_affinity(mask, abort_bool) \
697  (mask)->get_system_affinity(abort_bool)
698 #define __kmp_set_system_affinity(mask, abort_bool) \
699  (mask)->set_system_affinity(abort_bool)
700 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
701 
702 class KMPAffinity {
703 public:
704  class Mask {
705  public:
706  void *operator new(size_t n);
707  void operator delete(void *p);
708  void *operator new[](size_t n);
709  void operator delete[](void *p);
710  virtual ~Mask() {}
711  // Set bit i to 1
712  virtual void set(int i) {}
713  // Return bit i
714  virtual bool is_set(int i) const { return false; }
715  // Set bit i to 0
716  virtual void clear(int i) {}
717  // Zero out entire mask
718  virtual void zero() {}
719  // Copy src into this mask
720  virtual void copy(const Mask *src) {}
721  // this &= rhs
722  virtual void bitwise_and(const Mask *rhs) {}
723  // this |= rhs
724  virtual void bitwise_or(const Mask *rhs) {}
725  // this = ~this
726  virtual void bitwise_not() {}
727  // API for iterating over an affinity mask
728  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
729  virtual int begin() const { return 0; }
730  virtual int end() const { return 0; }
731  virtual int next(int previous) const { return 0; }
732 #if KMP_OS_WINDOWS
733  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
734 #endif
735  // Set the system's affinity to this affinity mask's value
736  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
737  // Set this affinity mask to the current system affinity
738  virtual int get_system_affinity(bool abort_on_error) { return -1; }
739  // Only 1 DWORD in the mask should have any procs set.
740  // Return the appropriate index, or -1 for an invalid mask.
741  virtual int get_proc_group() const { return -1; }
742  };
743  void *operator new(size_t n);
744  void operator delete(void *p);
745  // Need virtual destructor
746  virtual ~KMPAffinity() = default;
747  // Determine if affinity is capable
748  virtual void determine_capable(const char *env_var) {}
749  // Bind the current thread to os proc
750  virtual void bind_thread(int proc) {}
751  // Factory functions to allocate/deallocate a mask
752  virtual Mask *allocate_mask() { return nullptr; }
753  virtual void deallocate_mask(Mask *m) {}
754  virtual Mask *allocate_mask_array(int num) { return nullptr; }
755  virtual void deallocate_mask_array(Mask *m) {}
756  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
757  static void pick_api();
758  static void destroy_api();
759  enum api_type {
760  NATIVE_OS
761 #if KMP_USE_HWLOC
762  ,
763  HWLOC
764 #endif
765  };
766  virtual api_type get_api_type() const {
767  KMP_ASSERT(0);
768  return NATIVE_OS;
769  }
770 
771 private:
772  static bool picked_api;
773 };
774 
775 typedef KMPAffinity::Mask kmp_affin_mask_t;
776 extern KMPAffinity *__kmp_affinity_dispatch;
777 
778 // Declare local char buffers with this size for printing debug and info
779 // messages, using __kmp_affinity_print_mask().
780 #define KMP_AFFIN_MASK_PRINT_LEN 1024
781 
782 enum affinity_type {
783  affinity_none = 0,
784  affinity_physical,
785  affinity_logical,
786  affinity_compact,
787  affinity_scatter,
788  affinity_explicit,
789  affinity_balanced,
790  affinity_disabled, // not used outsize the env var parser
791  affinity_default
792 };
793 
794 enum affinity_top_method {
795  affinity_top_method_all = 0, // try all (supported) methods, in order
796 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
797  affinity_top_method_apicid,
798  affinity_top_method_x2apicid,
799  affinity_top_method_x2apicid_1f,
800 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
801  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
802 #if KMP_GROUP_AFFINITY
803  affinity_top_method_group,
804 #endif /* KMP_GROUP_AFFINITY */
805  affinity_top_method_flat,
806 #if KMP_USE_HWLOC
807  affinity_top_method_hwloc,
808 #endif
809  affinity_top_method_default
810 };
811 
812 #define affinity_respect_mask_default (-1)
813 
814 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
815 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
816 extern int __kmp_affinity_gran_levels; /* corresponding int value */
817 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
818 extern enum affinity_top_method __kmp_affinity_top_method;
819 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
820 extern int __kmp_affinity_offset; /* Affinity offset value */
821 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
822 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
823 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
824 extern char *__kmp_affinity_proclist; /* proc ID list */
825 extern kmp_affin_mask_t *__kmp_affinity_masks;
826 extern unsigned __kmp_affinity_num_masks;
827 extern void __kmp_affinity_bind_thread(int which);
828 
829 extern kmp_affin_mask_t *__kmp_affin_fullMask;
830 extern char *__kmp_cpuinfo_file;
831 
832 #endif /* KMP_AFFINITY_SUPPORTED */
833 
834 // This needs to be kept in sync with the values in omp.h !!!
835 typedef enum kmp_proc_bind_t {
836  proc_bind_false = 0,
837  proc_bind_true,
838  proc_bind_primary,
839  proc_bind_close,
840  proc_bind_spread,
841  proc_bind_intel, // use KMP_AFFINITY interface
842  proc_bind_default
843 } kmp_proc_bind_t;
844 
845 typedef struct kmp_nested_proc_bind_t {
846  kmp_proc_bind_t *bind_types;
847  int size;
848  int used;
849 } kmp_nested_proc_bind_t;
850 
851 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
852 extern kmp_proc_bind_t __kmp_teams_proc_bind;
853 
854 extern int __kmp_display_affinity;
855 extern char *__kmp_affinity_format;
856 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
857 #if OMPT_SUPPORT
858 extern int __kmp_tool;
859 extern char *__kmp_tool_libraries;
860 #endif // OMPT_SUPPORT
861 
862 #if KMP_AFFINITY_SUPPORTED
863 #define KMP_PLACE_ALL (-1)
864 #define KMP_PLACE_UNDEFINED (-2)
865 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
866 #define KMP_AFFINITY_NON_PROC_BIND \
867  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
868  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
869  (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
870 #endif /* KMP_AFFINITY_SUPPORTED */
871 
872 extern int __kmp_affinity_num_places;
873 
874 typedef enum kmp_cancel_kind_t {
875  cancel_noreq = 0,
876  cancel_parallel = 1,
877  cancel_loop = 2,
878  cancel_sections = 3,
879  cancel_taskgroup = 4
880 } kmp_cancel_kind_t;
881 
882 // KMP_HW_SUBSET support:
883 typedef struct kmp_hws_item {
884  int num;
885  int offset;
886 } kmp_hws_item_t;
887 
888 extern kmp_hws_item_t __kmp_hws_socket;
889 extern kmp_hws_item_t __kmp_hws_die;
890 extern kmp_hws_item_t __kmp_hws_node;
891 extern kmp_hws_item_t __kmp_hws_tile;
892 extern kmp_hws_item_t __kmp_hws_core;
893 extern kmp_hws_item_t __kmp_hws_proc;
894 extern int __kmp_hws_requested;
895 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
896 
897 /* ------------------------------------------------------------------------ */
898 
899 #define KMP_PAD(type, sz) \
900  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
901 
902 // We need to avoid using -1 as a GTID as +1 is added to the gtid
903 // when storing it in a lock, and the value 0 is reserved.
904 #define KMP_GTID_DNE (-2) /* Does not exist */
905 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
906 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
907 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
908 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
909 
910 /* OpenMP 5.0 Memory Management support */
911 
912 #ifndef __OMP_H
913 // Duplicate type definitions from omp.h
914 typedef uintptr_t omp_uintptr_t;
915 
916 typedef enum {
917  omp_atk_sync_hint = 1,
918  omp_atk_alignment = 2,
919  omp_atk_access = 3,
920  omp_atk_pool_size = 4,
921  omp_atk_fallback = 5,
922  omp_atk_fb_data = 6,
923  omp_atk_pinned = 7,
924  omp_atk_partition = 8
925 } omp_alloctrait_key_t;
926 
927 typedef enum {
928  omp_atv_false = 0,
929  omp_atv_true = 1,
930  omp_atv_contended = 3,
931  omp_atv_uncontended = 4,
932  omp_atv_serialized = 5,
933  omp_atv_sequential = omp_atv_serialized, // (deprecated)
934  omp_atv_private = 6,
935  omp_atv_all = 7,
936  omp_atv_thread = 8,
937  omp_atv_pteam = 9,
938  omp_atv_cgroup = 10,
939  omp_atv_default_mem_fb = 11,
940  omp_atv_null_fb = 12,
941  omp_atv_abort_fb = 13,
942  omp_atv_allocator_fb = 14,
943  omp_atv_environment = 15,
944  omp_atv_nearest = 16,
945  omp_atv_blocked = 17,
946  omp_atv_interleaved = 18
947 } omp_alloctrait_value_t;
948 #define omp_atv_default ((omp_uintptr_t)-1)
949 
950 typedef void *omp_memspace_handle_t;
951 extern omp_memspace_handle_t const omp_default_mem_space;
952 extern omp_memspace_handle_t const omp_large_cap_mem_space;
953 extern omp_memspace_handle_t const omp_const_mem_space;
954 extern omp_memspace_handle_t const omp_high_bw_mem_space;
955 extern omp_memspace_handle_t const omp_low_lat_mem_space;
956 // Preview of target memory support
957 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
958 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
959 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
960 
961 typedef struct {
962  omp_alloctrait_key_t key;
963  omp_uintptr_t value;
964 } omp_alloctrait_t;
965 
966 typedef void *omp_allocator_handle_t;
967 extern omp_allocator_handle_t const omp_null_allocator;
968 extern omp_allocator_handle_t const omp_default_mem_alloc;
969 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
970 extern omp_allocator_handle_t const omp_const_mem_alloc;
971 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
972 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
973 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
974 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
975 extern omp_allocator_handle_t const omp_thread_mem_alloc;
976 // Preview of target memory support
977 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
978 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
979 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
980 extern omp_allocator_handle_t const kmp_max_mem_alloc;
981 extern omp_allocator_handle_t __kmp_def_allocator;
982 
983 // end of duplicate type definitions from omp.h
984 #endif
985 
986 extern int __kmp_memkind_available;
987 
988 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
989 
990 typedef struct kmp_allocator_t {
991  omp_memspace_handle_t memspace;
992  void **memkind; // pointer to memkind
993  size_t alignment;
994  omp_alloctrait_value_t fb;
995  kmp_allocator_t *fb_data;
996  kmp_uint64 pool_size;
997  kmp_uint64 pool_used;
998 } kmp_allocator_t;
999 
1000 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1001  omp_memspace_handle_t,
1002  int ntraits,
1003  omp_alloctrait_t traits[]);
1004 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1005 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1006 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1007 // external interfaces, may be used by compiler
1008 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1009 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1010  omp_allocator_handle_t al);
1011 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1012  omp_allocator_handle_t al);
1013 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1014  omp_allocator_handle_t al,
1015  omp_allocator_handle_t free_al);
1016 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1017 // internal interfaces, contain real implementation
1018 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1019  omp_allocator_handle_t al);
1020 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1021  omp_allocator_handle_t al);
1022 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1023  omp_allocator_handle_t al,
1024  omp_allocator_handle_t free_al);
1025 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1026 
1027 extern void __kmp_init_memkind();
1028 extern void __kmp_fini_memkind();
1029 extern void __kmp_init_target_mem();
1030 
1031 /* ------------------------------------------------------------------------ */
1032 
1033 #define KMP_UINT64_MAX \
1034  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1035 
1036 #define KMP_MIN_NTH 1
1037 
1038 #ifndef KMP_MAX_NTH
1039 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1040 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1041 #else
1042 #define KMP_MAX_NTH INT_MAX
1043 #endif
1044 #endif /* KMP_MAX_NTH */
1045 
1046 #ifdef PTHREAD_STACK_MIN
1047 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1048 #else
1049 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1050 #endif
1051 
1052 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1053 
1054 #if KMP_ARCH_X86
1055 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1056 #elif KMP_ARCH_X86_64
1057 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1058 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1059 #else
1060 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1061 #endif
1062 
1063 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1064 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1065 #define KMP_MAX_MALLOC_POOL_INCR \
1066  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1067 
1068 #define KMP_MIN_STKOFFSET (0)
1069 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1070 #if KMP_OS_DARWIN
1071 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1072 #else
1073 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1074 #endif
1075 
1076 #define KMP_MIN_STKPADDING (0)
1077 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1078 
1079 #define KMP_BLOCKTIME_MULTIPLIER \
1080  (1000) /* number of blocktime units per second */
1081 #define KMP_MIN_BLOCKTIME (0)
1082 #define KMP_MAX_BLOCKTIME \
1083  (INT_MAX) /* Must be this for "infinite" setting the work */
1084 
1085 /* __kmp_blocktime is in milliseconds */
1086 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1087 
1088 #if KMP_USE_MONITOR
1089 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1090 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1091 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1092 
1093 /* Calculate new number of monitor wakeups for a specific block time based on
1094  previous monitor_wakeups. Only allow increasing number of wakeups */
1095 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1096  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1097  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1098  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1099  ? (monitor_wakeups) \
1100  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1101 
1102 /* Calculate number of intervals for a specific block time based on
1103  monitor_wakeups */
1104 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1105  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1106  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1107 #else
1108 #define KMP_BLOCKTIME(team, tid) \
1109  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1110 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1111 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1112 extern kmp_uint64 __kmp_ticks_per_msec;
1113 #if KMP_COMPILER_ICC
1114 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1115 #else
1116 #define KMP_NOW() __kmp_hardware_timestamp()
1117 #endif
1118 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1119 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1120  (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1121 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1122 #else
1123 // System time is retrieved sporadically while blocking.
1124 extern kmp_uint64 __kmp_now_nsec();
1125 #define KMP_NOW() __kmp_now_nsec()
1126 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1127 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1128  (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1129 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1130 #endif
1131 #endif // KMP_USE_MONITOR
1132 
1133 #define KMP_MIN_STATSCOLS 40
1134 #define KMP_MAX_STATSCOLS 4096
1135 #define KMP_DEFAULT_STATSCOLS 80
1136 
1137 #define KMP_MIN_INTERVAL 0
1138 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1139 #define KMP_DEFAULT_INTERVAL 0
1140 
1141 #define KMP_MIN_CHUNK 1
1142 #define KMP_MAX_CHUNK (INT_MAX - 1)
1143 #define KMP_DEFAULT_CHUNK 1
1144 
1145 #define KMP_MIN_DISP_NUM_BUFF 1
1146 #define KMP_DFLT_DISP_NUM_BUFF 7
1147 #define KMP_MAX_DISP_NUM_BUFF 4096
1148 
1149 #define KMP_MAX_ORDERED 8
1150 
1151 #define KMP_MAX_FIELDS 32
1152 
1153 #define KMP_MAX_BRANCH_BITS 31
1154 
1155 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1156 
1157 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1158 
1159 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1160 
1161 /* Minimum number of threads before switch to TLS gtid (experimentally
1162  determined) */
1163 /* josh TODO: what about OS X* tuning? */
1164 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1165 #define KMP_TLS_GTID_MIN 5
1166 #else
1167 #define KMP_TLS_GTID_MIN INT_MAX
1168 #endif
1169 
1170 #define KMP_MASTER_TID(tid) (0 == (tid))
1171 #define KMP_WORKER_TID(tid) (0 != (tid))
1172 
1173 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1174 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1175 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1176 
1177 #ifndef TRUE
1178 #define FALSE 0
1179 #define TRUE (!FALSE)
1180 #endif
1181 
1182 /* NOTE: all of the following constants must be even */
1183 
1184 #if KMP_OS_WINDOWS
1185 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1186 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1187 #elif KMP_OS_LINUX
1188 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1189 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1190 #elif KMP_OS_DARWIN
1191 /* TODO: tune for KMP_OS_DARWIN */
1192 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1193 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1194 #elif KMP_OS_DRAGONFLY
1195 /* TODO: tune for KMP_OS_DRAGONFLY */
1196 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1197 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1198 #elif KMP_OS_FREEBSD
1199 /* TODO: tune for KMP_OS_FREEBSD */
1200 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1201 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1202 #elif KMP_OS_NETBSD
1203 /* TODO: tune for KMP_OS_NETBSD */
1204 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1205 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1206 #elif KMP_OS_HURD
1207 /* TODO: tune for KMP_OS_HURD */
1208 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1209 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1210 #elif KMP_OS_OPENBSD
1211 /* TODO: tune for KMP_OS_OPENBSD */
1212 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1213 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1214 #endif
1215 
1216 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1217 typedef struct kmp_cpuid {
1218  kmp_uint32 eax;
1219  kmp_uint32 ebx;
1220  kmp_uint32 ecx;
1221  kmp_uint32 edx;
1222 } kmp_cpuid_t;
1223 
1224 typedef struct kmp_cpuinfo_flags_t {
1225  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1226  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1227  unsigned hybrid : 1;
1228  unsigned reserved : 29; // Ensure size of 32 bits
1229 } kmp_cpuinfo_flags_t;
1230 
1231 typedef struct kmp_cpuinfo {
1232  int initialized; // If 0, other fields are not initialized.
1233  int signature; // CPUID(1).EAX
1234  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1235  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1236  // Model << 4 ) + Model)
1237  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1238  kmp_cpuinfo_flags_t flags;
1239  int apic_id;
1240  int physical_id;
1241  int logical_id;
1242  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1243  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1244 } kmp_cpuinfo_t;
1245 
1246 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1247 
1248 #if KMP_OS_UNIX
1249 // subleaf is only needed for cache and topology discovery and can be set to
1250 // zero in most cases
1251 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1252  __asm__ __volatile__("cpuid"
1253  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1254  : "a"(leaf), "c"(subleaf));
1255 }
1256 // Load p into FPU control word
1257 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1258  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1259 }
1260 // Store FPU control word into p
1261 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1262  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1263 }
1264 static inline void __kmp_clear_x87_fpu_status_word() {
1265 #if KMP_MIC
1266  // 32-bit protected mode x87 FPU state
1267  struct x87_fpu_state {
1268  unsigned cw;
1269  unsigned sw;
1270  unsigned tw;
1271  unsigned fip;
1272  unsigned fips;
1273  unsigned fdp;
1274  unsigned fds;
1275  };
1276  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1277  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1278  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1279  "fldenv %0\n\t" // load FP env back
1280  : "+m"(fpu_state), "+m"(fpu_state.sw));
1281 #else
1282  __asm__ __volatile__("fnclex");
1283 #endif // KMP_MIC
1284 }
1285 #if __SSE__
1286 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1287 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1288 #else
1289 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1290 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1291 #endif
1292 #else
1293 // Windows still has these as external functions in assembly file
1294 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1295 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1296 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1297 extern void __kmp_clear_x87_fpu_status_word();
1298 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1299 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1300 #endif // KMP_OS_UNIX
1301 
1302 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1303 
1304 #if KMP_ARCH_X86
1305 extern void __kmp_x86_pause(void);
1306 #elif KMP_MIC
1307 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1308 // regression after removal of extra PAUSE from spin loops. Changing
1309 // the delay from 100 to 300 showed even better performance than double PAUSE
1310 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1311 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1312 #else
1313 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1314 #endif
1315 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1316 #elif KMP_ARCH_PPC64
1317 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1318 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1319 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1320 #define KMP_CPU_PAUSE() \
1321  do { \
1322  KMP_PPC64_PRI_LOW(); \
1323  KMP_PPC64_PRI_MED(); \
1324  KMP_PPC64_PRI_LOC_MB(); \
1325  } while (0)
1326 #else
1327 #define KMP_CPU_PAUSE() /* nothing to do */
1328 #endif
1329 
1330 #define KMP_INIT_YIELD(count) \
1331  { (count) = __kmp_yield_init; }
1332 
1333 #define KMP_OVERSUBSCRIBED \
1334  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1335 
1336 #define KMP_TRY_YIELD \
1337  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1338 
1339 #define KMP_TRY_YIELD_OVERSUB \
1340  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1341 
1342 #define KMP_YIELD(cond) \
1343  { \
1344  KMP_CPU_PAUSE(); \
1345  if ((cond) && (KMP_TRY_YIELD)) \
1346  __kmp_yield(); \
1347  }
1348 
1349 #define KMP_YIELD_OVERSUB() \
1350  { \
1351  KMP_CPU_PAUSE(); \
1352  if ((KMP_TRY_YIELD_OVERSUB)) \
1353  __kmp_yield(); \
1354  }
1355 
1356 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1357 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1358 #define KMP_YIELD_SPIN(count) \
1359  { \
1360  KMP_CPU_PAUSE(); \
1361  if (KMP_TRY_YIELD) { \
1362  (count) -= 2; \
1363  if (!(count)) { \
1364  __kmp_yield(); \
1365  (count) = __kmp_yield_next; \
1366  } \
1367  } \
1368  }
1369 
1370 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1371  { \
1372  KMP_CPU_PAUSE(); \
1373  if ((KMP_TRY_YIELD_OVERSUB)) \
1374  __kmp_yield(); \
1375  else if (__kmp_use_yield == 1) { \
1376  (count) -= 2; \
1377  if (!(count)) { \
1378  __kmp_yield(); \
1379  (count) = __kmp_yield_next; \
1380  } \
1381  } \
1382  }
1383 
1384 // User-level Monitor/Mwait
1385 #if KMP_HAVE_UMWAIT
1386 // We always try for UMWAIT first
1387 #if KMP_HAVE_WAITPKG_INTRINSICS
1388 #if KMP_HAVE_IMMINTRIN_H
1389 #include <immintrin.h>
1390 #elif KMP_HAVE_INTRIN_H
1391 #include <intrin.h>
1392 #endif
1393 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1394 KMP_ATTRIBUTE_TARGET_WAITPKG
1395 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1396 #if !KMP_HAVE_WAITPKG_INTRINSICS
1397  uint32_t timeHi = uint32_t(counter >> 32);
1398  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1399  char flag;
1400  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1401  "setb %0"
1402  : "=r"(flag)
1403  : "a"(timeLo), "d"(timeHi), "c"(hint)
1404  :);
1405  return flag;
1406 #else
1407  return _tpause(hint, counter);
1408 #endif
1409 }
1410 KMP_ATTRIBUTE_TARGET_WAITPKG
1411 static inline void __kmp_umonitor(void *cacheline) {
1412 #if !KMP_HAVE_WAITPKG_INTRINSICS
1413  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1414  :
1415  : "a"(cacheline)
1416  :);
1417 #else
1418  _umonitor(cacheline);
1419 #endif
1420 }
1421 KMP_ATTRIBUTE_TARGET_WAITPKG
1422 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1423 #if !KMP_HAVE_WAITPKG_INTRINSICS
1424  uint32_t timeHi = uint32_t(counter >> 32);
1425  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1426  char flag;
1427  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1428  "setb %0"
1429  : "=r"(flag)
1430  : "a"(timeLo), "d"(timeHi), "c"(hint)
1431  :);
1432  return flag;
1433 #else
1434  return _umwait(hint, counter);
1435 #endif
1436 }
1437 #elif KMP_HAVE_MWAIT
1438 #if KMP_OS_UNIX
1439 #include <pmmintrin.h>
1440 #else
1441 #include <intrin.h>
1442 #endif
1443 #if KMP_OS_UNIX
1444 __attribute__((target("sse3")))
1445 #endif
1446 static inline void
1447 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1448  _mm_monitor(cacheline, extensions, hints);
1449 }
1450 #if KMP_OS_UNIX
1451 __attribute__((target("sse3")))
1452 #endif
1453 static inline void
1454 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1455  _mm_mwait(extensions, hints);
1456 }
1457 #endif // KMP_HAVE_UMWAIT
1458 
1459 /* ------------------------------------------------------------------------ */
1460 /* Support datatypes for the orphaned construct nesting checks. */
1461 /* ------------------------------------------------------------------------ */
1462 
1463 /* When adding to this enum, add its corresponding string in cons_text_c[]
1464  * array in kmp_error.cpp */
1465 enum cons_type {
1466  ct_none,
1467  ct_parallel,
1468  ct_pdo,
1469  ct_pdo_ordered,
1470  ct_psections,
1471  ct_psingle,
1472  ct_critical,
1473  ct_ordered_in_parallel,
1474  ct_ordered_in_pdo,
1475  ct_master,
1476  ct_reduce,
1477  ct_barrier,
1478  ct_masked
1479 };
1480 
1481 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1482 
1483 struct cons_data {
1484  ident_t const *ident;
1485  enum cons_type type;
1486  int prev;
1487  kmp_user_lock_p
1488  name; /* address exclusively for critical section name comparison */
1489 };
1490 
1491 struct cons_header {
1492  int p_top, w_top, s_top;
1493  int stack_size, stack_top;
1494  struct cons_data *stack_data;
1495 };
1496 
1497 struct kmp_region_info {
1498  char *text;
1499  int offset[KMP_MAX_FIELDS];
1500  int length[KMP_MAX_FIELDS];
1501 };
1502 
1503 /* ---------------------------------------------------------------------- */
1504 /* ---------------------------------------------------------------------- */
1505 
1506 #if KMP_OS_WINDOWS
1507 typedef HANDLE kmp_thread_t;
1508 typedef DWORD kmp_key_t;
1509 #endif /* KMP_OS_WINDOWS */
1510 
1511 #if KMP_OS_UNIX
1512 typedef pthread_t kmp_thread_t;
1513 typedef pthread_key_t kmp_key_t;
1514 #endif
1515 
1516 extern kmp_key_t __kmp_gtid_threadprivate_key;
1517 
1518 typedef struct kmp_sys_info {
1519  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1520  long minflt; /* the number of page faults serviced without any I/O */
1521  long majflt; /* the number of page faults serviced that required I/O */
1522  long nswap; /* the number of times a process was "swapped" out of memory */
1523  long inblock; /* the number of times the file system had to perform input */
1524  long oublock; /* the number of times the file system had to perform output */
1525  long nvcsw; /* the number of times a context switch was voluntarily */
1526  long nivcsw; /* the number of times a context switch was forced */
1527 } kmp_sys_info_t;
1528 
1529 #if USE_ITT_BUILD
1530 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1531 // required type here. Later we will check the type meets requirements.
1532 typedef int kmp_itt_mark_t;
1533 #define KMP_ITT_DEBUG 0
1534 #endif /* USE_ITT_BUILD */
1535 
1536 typedef kmp_int32 kmp_critical_name[8];
1537 
1547 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1548 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1549  ...);
1550 
1555 /* ---------------------------------------------------------------------------
1556  */
1557 /* Threadprivate initialization/finalization function declarations */
1558 
1559 /* for non-array objects: __kmpc_threadprivate_register() */
1560 
1565 typedef void *(*kmpc_ctor)(void *);
1566 
1571 typedef void (*kmpc_dtor)(
1572  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1573  compiler */
1578 typedef void *(*kmpc_cctor)(void *, void *);
1579 
1580 /* for array objects: __kmpc_threadprivate_register_vec() */
1581 /* First arg: "this" pointer */
1582 /* Last arg: number of array elements */
1588 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1594 typedef void (*kmpc_dtor_vec)(void *, size_t);
1600 typedef void *(*kmpc_cctor_vec)(void *, void *,
1601  size_t); /* function unused by compiler */
1602 
1607 /* keeps tracked of threadprivate cache allocations for cleanup later */
1608 typedef struct kmp_cached_addr {
1609  void **addr; /* address of allocated cache */
1610  void ***compiler_cache; /* pointer to compiler's cache */
1611  void *data; /* pointer to global data */
1612  struct kmp_cached_addr *next; /* pointer to next cached address */
1613 } kmp_cached_addr_t;
1614 
1615 struct private_data {
1616  struct private_data *next; /* The next descriptor in the list */
1617  void *data; /* The data buffer for this descriptor */
1618  int more; /* The repeat count for this descriptor */
1619  size_t size; /* The data size for this descriptor */
1620 };
1621 
1622 struct private_common {
1623  struct private_common *next;
1624  struct private_common *link;
1625  void *gbl_addr;
1626  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1627  size_t cmn_size;
1628 };
1629 
1630 struct shared_common {
1631  struct shared_common *next;
1632  struct private_data *pod_init;
1633  void *obj_init;
1634  void *gbl_addr;
1635  union {
1636  kmpc_ctor ctor;
1637  kmpc_ctor_vec ctorv;
1638  } ct;
1639  union {
1640  kmpc_cctor cctor;
1641  kmpc_cctor_vec cctorv;
1642  } cct;
1643  union {
1644  kmpc_dtor dtor;
1645  kmpc_dtor_vec dtorv;
1646  } dt;
1647  size_t vec_len;
1648  int is_vec;
1649  size_t cmn_size;
1650 };
1651 
1652 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1653 #define KMP_HASH_TABLE_SIZE \
1654  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1655 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1656 #define KMP_HASH(x) \
1657  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1658 
1659 struct common_table {
1660  struct private_common *data[KMP_HASH_TABLE_SIZE];
1661 };
1662 
1663 struct shared_table {
1664  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1665 };
1666 
1667 /* ------------------------------------------------------------------------ */
1668 
1669 #if KMP_USE_HIER_SCHED
1670 // Shared barrier data that exists inside a single unit of the scheduling
1671 // hierarchy
1672 typedef struct kmp_hier_private_bdata_t {
1673  kmp_int32 num_active;
1674  kmp_uint64 index;
1675  kmp_uint64 wait_val[2];
1676 } kmp_hier_private_bdata_t;
1677 #endif
1678 
1679 typedef struct kmp_sched_flags {
1680  unsigned ordered : 1;
1681  unsigned nomerge : 1;
1682  unsigned contains_last : 1;
1683 #if KMP_USE_HIER_SCHED
1684  unsigned use_hier : 1;
1685  unsigned unused : 28;
1686 #else
1687  unsigned unused : 29;
1688 #endif
1689 } kmp_sched_flags_t;
1690 
1691 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1692 
1693 #if KMP_STATIC_STEAL_ENABLED
1694 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1695  kmp_int32 count;
1696  kmp_int32 ub;
1697  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1698  kmp_int32 lb;
1699  kmp_int32 st;
1700  kmp_int32 tc;
1701  kmp_lock_t *steal_lock; // lock used for chunk stealing
1702  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1703  // a) parm3 is properly aligned and
1704  // b) all parm1-4 are on the same cache line.
1705  // Because of parm1-4 are used together, performance seems to be better
1706  // if they are on the same cache line (not measured though).
1707 
1708  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1709  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1710  kmp_int32 parm2; // make no real change at least while padding is off.
1711  kmp_int32 parm3;
1712  kmp_int32 parm4;
1713  };
1714 
1715  kmp_uint32 ordered_lower;
1716  kmp_uint32 ordered_upper;
1717 #if KMP_OS_WINDOWS
1718  kmp_int32 last_upper;
1719 #endif /* KMP_OS_WINDOWS */
1720 } dispatch_private_info32_t;
1721 
1722 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1723  kmp_int64 count; // current chunk number for static & static-steal scheduling
1724  kmp_int64 ub; /* upper-bound */
1725  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1726  kmp_int64 lb; /* lower-bound */
1727  kmp_int64 st; /* stride */
1728  kmp_int64 tc; /* trip count (number of iterations) */
1729  kmp_lock_t *steal_lock; // lock used for chunk stealing
1730  /* parm[1-4] are used in different ways by different scheduling algorithms */
1731 
1732  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1733  // a) parm3 is properly aligned and
1734  // b) all parm1-4 are in the same cache line.
1735  // Because of parm1-4 are used together, performance seems to be better
1736  // if they are in the same line (not measured though).
1737 
1738  struct KMP_ALIGN(32) {
1739  kmp_int64 parm1;
1740  kmp_int64 parm2;
1741  kmp_int64 parm3;
1742  kmp_int64 parm4;
1743  };
1744 
1745  kmp_uint64 ordered_lower;
1746  kmp_uint64 ordered_upper;
1747 #if KMP_OS_WINDOWS
1748  kmp_int64 last_upper;
1749 #endif /* KMP_OS_WINDOWS */
1750 } dispatch_private_info64_t;
1751 #else /* KMP_STATIC_STEAL_ENABLED */
1752 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1753  kmp_int32 lb;
1754  kmp_int32 ub;
1755  kmp_int32 st;
1756  kmp_int32 tc;
1757 
1758  kmp_int32 parm1;
1759  kmp_int32 parm2;
1760  kmp_int32 parm3;
1761  kmp_int32 parm4;
1762 
1763  kmp_int32 count;
1764 
1765  kmp_uint32 ordered_lower;
1766  kmp_uint32 ordered_upper;
1767 #if KMP_OS_WINDOWS
1768  kmp_int32 last_upper;
1769 #endif /* KMP_OS_WINDOWS */
1770 } dispatch_private_info32_t;
1771 
1772 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1773  kmp_int64 lb; /* lower-bound */
1774  kmp_int64 ub; /* upper-bound */
1775  kmp_int64 st; /* stride */
1776  kmp_int64 tc; /* trip count (number of iterations) */
1777 
1778  /* parm[1-4] are used in different ways by different scheduling algorithms */
1779  kmp_int64 parm1;
1780  kmp_int64 parm2;
1781  kmp_int64 parm3;
1782  kmp_int64 parm4;
1783 
1784  kmp_int64 count; /* current chunk number for static scheduling */
1785 
1786  kmp_uint64 ordered_lower;
1787  kmp_uint64 ordered_upper;
1788 #if KMP_OS_WINDOWS
1789  kmp_int64 last_upper;
1790 #endif /* KMP_OS_WINDOWS */
1791 } dispatch_private_info64_t;
1792 #endif /* KMP_STATIC_STEAL_ENABLED */
1793 
1794 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1795  union private_info {
1796  dispatch_private_info32_t p32;
1797  dispatch_private_info64_t p64;
1798  } u;
1799  enum sched_type schedule; /* scheduling algorithm */
1800  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1801  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1802  kmp_int32 ordered_bumped;
1803  // Stack of buffers for nest of serial regions
1804  struct dispatch_private_info *next;
1805  kmp_int32 type_size; /* the size of types in private_info */
1806 #if KMP_USE_HIER_SCHED
1807  kmp_int32 hier_id;
1808  void *parent; /* hierarchical scheduling parent pointer */
1809 #endif
1810  enum cons_type pushed_ws;
1811 } dispatch_private_info_t;
1812 
1813 typedef struct dispatch_shared_info32 {
1814  /* chunk index under dynamic, number of idle threads under static-steal;
1815  iteration index otherwise */
1816  volatile kmp_uint32 iteration;
1817  volatile kmp_int32 num_done;
1818  volatile kmp_uint32 ordered_iteration;
1819  // Dummy to retain the structure size after making ordered_iteration scalar
1820  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1821 } dispatch_shared_info32_t;
1822 
1823 typedef struct dispatch_shared_info64 {
1824  /* chunk index under dynamic, number of idle threads under static-steal;
1825  iteration index otherwise */
1826  volatile kmp_uint64 iteration;
1827  volatile kmp_int64 num_done;
1828  volatile kmp_uint64 ordered_iteration;
1829  // Dummy to retain the structure size after making ordered_iteration scalar
1830  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1831 } dispatch_shared_info64_t;
1832 
1833 typedef struct dispatch_shared_info {
1834  union shared_info {
1835  dispatch_shared_info32_t s32;
1836  dispatch_shared_info64_t s64;
1837  } u;
1838  volatile kmp_uint32 buffer_index;
1839  volatile kmp_int32 doacross_buf_idx; // teamwise index
1840  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1841  kmp_int32 doacross_num_done; // count finished threads
1842 #if KMP_USE_HIER_SCHED
1843  void *hier;
1844 #endif
1845 #if KMP_USE_HWLOC
1846  // When linking with libhwloc, the ORDERED EPCC test slows down on big
1847  // machines (> 48 cores). Performance analysis showed that a cache thrash
1848  // was occurring and this padding helps alleviate the problem.
1849  char padding[64];
1850 #endif
1851 } dispatch_shared_info_t;
1852 
1853 typedef struct kmp_disp {
1854  /* Vector for ORDERED SECTION */
1855  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1856  /* Vector for END ORDERED SECTION */
1857  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1858 
1859  dispatch_shared_info_t *th_dispatch_sh_current;
1860  dispatch_private_info_t *th_dispatch_pr_current;
1861 
1862  dispatch_private_info_t *th_disp_buffer;
1863  kmp_uint32 th_disp_index;
1864  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1865  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1866  kmp_int64 *th_doacross_info; // info on loop bounds
1867 #if KMP_USE_INTERNODE_ALIGNMENT
1868  char more_padding[INTERNODE_CACHE_LINE];
1869 #endif
1870 } kmp_disp_t;
1871 
1872 /* ------------------------------------------------------------------------ */
1873 /* Barrier stuff */
1874 
1875 /* constants for barrier state update */
1876 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1877 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1878 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1879 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1880 
1881 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1882 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1883 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1884 
1885 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1886 #error "Barrier sleep bit must be smaller than barrier bump bit"
1887 #endif
1888 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1889 #error "Barrier unused bit must be smaller than barrier bump bit"
1890 #endif
1891 
1892 // Constants for release barrier wait state: currently, hierarchical only
1893 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1894 #define KMP_BARRIER_OWN_FLAG \
1895  1 // Normal state; worker waiting on own b_go flag in release
1896 #define KMP_BARRIER_PARENT_FLAG \
1897  2 // Special state; worker waiting on parent's b_go flag in release
1898 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1899  3 // Special state; tells worker to shift from parent to own b_go
1900 #define KMP_BARRIER_SWITCHING \
1901  4 // Special state; worker resets appropriate flag on wake-up
1902 
1903 #define KMP_NOT_SAFE_TO_REAP \
1904  0 // Thread th_reap_state: not safe to reap (tasking)
1905 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1906 
1907 // The flag_type describes the storage used for the flag.
1908 enum flag_type {
1909  flag32,
1910  flag64,
1911  atomic_flag64,
1912  flag_oncore,
1913  flag_unset
1914 };
1915 
1916 enum barrier_type {
1917  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1918  barriers if enabled) */
1919  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1920 #if KMP_FAST_REDUCTION_BARRIER
1921  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1922 #endif // KMP_FAST_REDUCTION_BARRIER
1923  bs_last_barrier /* Just a placeholder to mark the end */
1924 };
1925 
1926 // to work with reduction barriers just like with plain barriers
1927 #if !KMP_FAST_REDUCTION_BARRIER
1928 #define bs_reduction_barrier bs_plain_barrier
1929 #endif // KMP_FAST_REDUCTION_BARRIER
1930 
1931 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1932  bp_linear_bar =
1933  0, /* Single level (degenerate) tree */
1934  bp_tree_bar =
1935  1, /* Balanced tree with branching factor 2^n */
1936  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1937  branching factor 2^n */
1938  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1939  bp_dist_bar = 4, /* Distributed barrier */
1940  bp_last_bar /* Placeholder to mark the end */
1941 } kmp_bar_pat_e;
1942 
1943 #define KMP_BARRIER_ICV_PUSH 1
1944 
1945 /* Record for holding the values of the internal controls stack records */
1946 typedef struct kmp_internal_control {
1947  int serial_nesting_level; /* corresponds to the value of the
1948  th_team_serialized field */
1949  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1950  thread) */
1951  kmp_int8
1952  bt_set; /* internal control for whether blocktime is explicitly set */
1953  int blocktime; /* internal control for blocktime */
1954 #if KMP_USE_MONITOR
1955  int bt_intervals; /* internal control for blocktime intervals */
1956 #endif
1957  int nproc; /* internal control for #threads for next parallel region (per
1958  thread) */
1959  int thread_limit; /* internal control for thread-limit-var */
1960  int max_active_levels; /* internal control for max_active_levels */
1961  kmp_r_sched_t
1962  sched; /* internal control for runtime schedule {sched,chunk} pair */
1963  kmp_proc_bind_t proc_bind; /* internal control for affinity */
1964  kmp_int32 default_device; /* internal control for default device */
1965  struct kmp_internal_control *next;
1966 } kmp_internal_control_t;
1967 
1968 static inline void copy_icvs(kmp_internal_control_t *dst,
1969  kmp_internal_control_t *src) {
1970  *dst = *src;
1971 }
1972 
1973 /* Thread barrier needs volatile barrier fields */
1974 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1975  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1976  // uses of it). It is not explicitly aligned below, because we *don't* want
1977  // it to be padded -- instead, we fit b_go into the same cache line with
1978  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1979  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1980  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1981  // same NGO store
1982  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1983  KMP_ALIGN_CACHE volatile kmp_uint64
1984  b_arrived; // STATE => task reached synch point.
1985  kmp_uint32 *skip_per_level;
1986  kmp_uint32 my_level;
1987  kmp_int32 parent_tid;
1988  kmp_int32 old_tid;
1989  kmp_uint32 depth;
1990  struct kmp_bstate *parent_bar;
1991  kmp_team_t *team;
1992  kmp_uint64 leaf_state;
1993  kmp_uint32 nproc;
1994  kmp_uint8 base_leaf_kids;
1995  kmp_uint8 leaf_kids;
1996  kmp_uint8 offset;
1997  kmp_uint8 wait_flag;
1998  kmp_uint8 use_oncore_barrier;
1999 #if USE_DEBUGGER
2000  // The following field is intended for the debugger solely. Only the worker
2001  // thread itself accesses this field: the worker increases it by 1 when it
2002  // arrives to a barrier.
2003  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2004 #endif /* USE_DEBUGGER */
2005 } kmp_bstate_t;
2006 
2007 union KMP_ALIGN_CACHE kmp_barrier_union {
2008  double b_align; /* use worst case alignment */
2009  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2010  kmp_bstate_t bb;
2011 };
2012 
2013 typedef union kmp_barrier_union kmp_balign_t;
2014 
2015 /* Team barrier needs only non-volatile arrived counter */
2016 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2017  double b_align; /* use worst case alignment */
2018  char b_pad[CACHE_LINE];
2019  struct {
2020  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2021 #if USE_DEBUGGER
2022  // The following two fields are indended for the debugger solely. Only
2023  // primary thread of the team accesses these fields: the first one is
2024  // increased by 1 when the primary thread arrives to a barrier, the second
2025  // one is increased by one when all the threads arrived.
2026  kmp_uint b_master_arrived;
2027  kmp_uint b_team_arrived;
2028 #endif
2029  };
2030 };
2031 
2032 typedef union kmp_barrier_team_union kmp_balign_team_t;
2033 
2034 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2035  threads when a condition changes. This is to workaround an NPTL bug where
2036  padding was added to pthread_cond_t which caused the initialization routine
2037  to write outside of the structure if compiled on pre-NPTL threads. */
2038 #if KMP_OS_WINDOWS
2039 typedef struct kmp_win32_mutex {
2040  /* The Lock */
2041  CRITICAL_SECTION cs;
2042 } kmp_win32_mutex_t;
2043 
2044 typedef struct kmp_win32_cond {
2045  /* Count of the number of waiters. */
2046  int waiters_count_;
2047 
2048  /* Serialize access to <waiters_count_> */
2049  kmp_win32_mutex_t waiters_count_lock_;
2050 
2051  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2052  int release_count_;
2053 
2054  /* Keeps track of the current "generation" so that we don't allow */
2055  /* one thread to steal all the "releases" from the broadcast. */
2056  int wait_generation_count_;
2057 
2058  /* A manual-reset event that's used to block and release waiting threads. */
2059  HANDLE event_;
2060 } kmp_win32_cond_t;
2061 #endif
2062 
2063 #if KMP_OS_UNIX
2064 
2065 union KMP_ALIGN_CACHE kmp_cond_union {
2066  double c_align;
2067  char c_pad[CACHE_LINE];
2068  pthread_cond_t c_cond;
2069 };
2070 
2071 typedef union kmp_cond_union kmp_cond_align_t;
2072 
2073 union KMP_ALIGN_CACHE kmp_mutex_union {
2074  double m_align;
2075  char m_pad[CACHE_LINE];
2076  pthread_mutex_t m_mutex;
2077 };
2078 
2079 typedef union kmp_mutex_union kmp_mutex_align_t;
2080 
2081 #endif /* KMP_OS_UNIX */
2082 
2083 typedef struct kmp_desc_base {
2084  void *ds_stackbase;
2085  size_t ds_stacksize;
2086  int ds_stackgrow;
2087  kmp_thread_t ds_thread;
2088  volatile int ds_tid;
2089  int ds_gtid;
2090 #if KMP_OS_WINDOWS
2091  volatile int ds_alive;
2092  DWORD ds_thread_id;
2093 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2094  However, debugger support (libomp_db) cannot work with handles, because they
2095  uncomparable. For example, debugger requests info about thread with handle h.
2096  h is valid within debugger process, and meaningless within debugee process.
2097  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2098  within debugee process, but it is a *new* handle which does *not* equal to
2099  any other handle in debugee... The only way to compare handles is convert
2100  them to system-wide ids. GetThreadId() function is available only in
2101  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2102  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2103  thread id by call to GetCurrentThreadId() from within the thread and save it
2104  to let libomp_db identify threads. */
2105 #endif /* KMP_OS_WINDOWS */
2106 } kmp_desc_base_t;
2107 
2108 typedef union KMP_ALIGN_CACHE kmp_desc {
2109  double ds_align; /* use worst case alignment */
2110  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2111  kmp_desc_base_t ds;
2112 } kmp_desc_t;
2113 
2114 typedef struct kmp_local {
2115  volatile int this_construct; /* count of single's encountered by thread */
2116  void *reduce_data;
2117 #if KMP_USE_BGET
2118  void *bget_data;
2119  void *bget_list;
2120 #if !USE_CMP_XCHG_FOR_BGET
2121 #ifdef USE_QUEUING_LOCK_FOR_BGET
2122  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2123 #else
2124  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2125 // bootstrap lock so we can use it at library
2126 // shutdown.
2127 #endif /* USE_LOCK_FOR_BGET */
2128 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2129 #endif /* KMP_USE_BGET */
2130 
2131  PACKED_REDUCTION_METHOD_T
2132  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2133  __kmpc_end_reduce*() */
2134 
2135 } kmp_local_t;
2136 
2137 #define KMP_CHECK_UPDATE(a, b) \
2138  if ((a) != (b)) \
2139  (a) = (b)
2140 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2141  if ((a) != (b)) \
2142  TCW_SYNC_PTR((a), (b))
2143 
2144 #define get__blocktime(xteam, xtid) \
2145  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2146 #define get__bt_set(xteam, xtid) \
2147  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2148 #if KMP_USE_MONITOR
2149 #define get__bt_intervals(xteam, xtid) \
2150  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2151 #endif
2152 
2153 #define get__dynamic_2(xteam, xtid) \
2154  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2155 #define get__nproc_2(xteam, xtid) \
2156  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2157 #define get__sched_2(xteam, xtid) \
2158  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2159 
2160 #define set__blocktime_team(xteam, xtid, xval) \
2161  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2162  (xval))
2163 
2164 #if KMP_USE_MONITOR
2165 #define set__bt_intervals_team(xteam, xtid, xval) \
2166  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2167  (xval))
2168 #endif
2169 
2170 #define set__bt_set_team(xteam, xtid, xval) \
2171  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2172 
2173 #define set__dynamic(xthread, xval) \
2174  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2175 #define get__dynamic(xthread) \
2176  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2177 
2178 #define set__nproc(xthread, xval) \
2179  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2180 
2181 #define set__thread_limit(xthread, xval) \
2182  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2183 
2184 #define set__max_active_levels(xthread, xval) \
2185  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2186 
2187 #define get__max_active_levels(xthread) \
2188  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2189 
2190 #define set__sched(xthread, xval) \
2191  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2192 
2193 #define set__proc_bind(xthread, xval) \
2194  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2195 #define get__proc_bind(xthread) \
2196  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2197 
2198 // OpenMP tasking data structures
2199 
2200 typedef enum kmp_tasking_mode {
2201  tskm_immediate_exec = 0,
2202  tskm_extra_barrier = 1,
2203  tskm_task_teams = 2,
2204  tskm_max = 2
2205 } kmp_tasking_mode_t;
2206 
2207 extern kmp_tasking_mode_t
2208  __kmp_tasking_mode; /* determines how/when to execute tasks */
2209 extern int __kmp_task_stealing_constraint;
2210 extern int __kmp_enable_task_throttling;
2211 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2212 // specified, defaults to 0 otherwise
2213 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2214 extern kmp_int32 __kmp_max_task_priority;
2215 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2216 extern kmp_uint64 __kmp_taskloop_min_tasks;
2217 
2218 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2219  taskdata first */
2220 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2221 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2222 
2223 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2224 // were spawned and queued since the previous barrier release.
2225 #define KMP_TASKING_ENABLED(task_team) \
2226  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2234 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2235 
2236 typedef union kmp_cmplrdata {
2237  kmp_int32 priority;
2238  kmp_routine_entry_t
2239  destructors; /* pointer to function to invoke deconstructors of
2240  firstprivate C++ objects */
2241  /* future data */
2242 } kmp_cmplrdata_t;
2243 
2244 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2247 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2248  void *shareds;
2249  kmp_routine_entry_t
2250  routine;
2251  kmp_int32 part_id;
2252  kmp_cmplrdata_t
2253  data1; /* Two known optional additions: destructors and priority */
2254  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2255  /* future data */
2256  /* private vars */
2257 } kmp_task_t;
2258 
2263 typedef struct kmp_taskgroup {
2264  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2265  std::atomic<kmp_int32>
2266  cancel_request; // request for cancellation of this taskgroup
2267  struct kmp_taskgroup *parent; // parent taskgroup
2268  // Block of data to perform task reduction
2269  void *reduce_data; // reduction related info
2270  kmp_int32 reduce_num_data; // number of data items to reduce
2271  uintptr_t *gomp_data; // gomp reduction data
2272 } kmp_taskgroup_t;
2273 
2274 // forward declarations
2275 typedef union kmp_depnode kmp_depnode_t;
2276 typedef struct kmp_depnode_list kmp_depnode_list_t;
2277 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2278 
2279 // macros for checking dep flag as an integer
2280 #define KMP_DEP_IN 0x1
2281 #define KMP_DEP_OUT 0x2
2282 #define KMP_DEP_INOUT 0x3
2283 #define KMP_DEP_MTX 0x4
2284 #define KMP_DEP_SET 0x8
2285 #define KMP_DEP_ALL 0x80
2286 // Compiler sends us this info:
2287 typedef struct kmp_depend_info {
2288  kmp_intptr_t base_addr;
2289  size_t len;
2290  union {
2291  kmp_uint8 flag; // flag as an unsigned char
2292  struct { // flag as a set of 8 bits
2293  unsigned in : 1;
2294  unsigned out : 1;
2295  unsigned mtx : 1;
2296  unsigned set : 1;
2297  unsigned unused : 3;
2298  unsigned all : 1;
2299  } flags;
2300  };
2301 } kmp_depend_info_t;
2302 
2303 // Internal structures to work with task dependencies:
2304 struct kmp_depnode_list {
2305  kmp_depnode_t *node;
2306  kmp_depnode_list_t *next;
2307 };
2308 
2309 // Max number of mutexinoutset dependencies per node
2310 #define MAX_MTX_DEPS 4
2311 
2312 typedef struct kmp_base_depnode {
2313  kmp_depnode_list_t *successors; /* used under lock */
2314  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2315  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2316  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2317  kmp_lock_t lock; /* guards shared fields: task, successors */
2318 #if KMP_SUPPORT_GRAPH_OUTPUT
2319  kmp_uint32 id;
2320 #endif
2321  std::atomic<kmp_int32> npredecessors;
2322  std::atomic<kmp_int32> nrefs;
2323 } kmp_base_depnode_t;
2324 
2325 union KMP_ALIGN_CACHE kmp_depnode {
2326  double dn_align; /* use worst case alignment */
2327  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2328  kmp_base_depnode_t dn;
2329 };
2330 
2331 struct kmp_dephash_entry {
2332  kmp_intptr_t addr;
2333  kmp_depnode_t *last_out;
2334  kmp_depnode_list_t *last_set;
2335  kmp_depnode_list_t *prev_set;
2336  kmp_uint8 last_flag;
2337  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2338  kmp_dephash_entry_t *next_in_bucket;
2339 };
2340 
2341 typedef struct kmp_dephash {
2342  kmp_dephash_entry_t **buckets;
2343  size_t size;
2344  kmp_depnode_t *last_all;
2345  size_t generation;
2346  kmp_uint32 nelements;
2347  kmp_uint32 nconflicts;
2348 } kmp_dephash_t;
2349 
2350 typedef struct kmp_task_affinity_info {
2351  kmp_intptr_t base_addr;
2352  size_t len;
2353  struct {
2354  bool flag1 : 1;
2355  bool flag2 : 1;
2356  kmp_int32 reserved : 30;
2357  } flags;
2358 } kmp_task_affinity_info_t;
2359 
2360 typedef enum kmp_event_type_t {
2361  KMP_EVENT_UNINITIALIZED = 0,
2362  KMP_EVENT_ALLOW_COMPLETION = 1
2363 } kmp_event_type_t;
2364 
2365 typedef struct {
2366  kmp_event_type_t type;
2367  kmp_tas_lock_t lock;
2368  union {
2369  kmp_task_t *task;
2370  } ed;
2371 } kmp_event_t;
2372 
2373 #ifdef BUILD_TIED_TASK_STACK
2374 
2375 /* Tied Task stack definitions */
2376 typedef struct kmp_stack_block {
2377  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2378  struct kmp_stack_block *sb_next;
2379  struct kmp_stack_block *sb_prev;
2380 } kmp_stack_block_t;
2381 
2382 typedef struct kmp_task_stack {
2383  kmp_stack_block_t ts_first_block; // first block of stack entries
2384  kmp_taskdata_t **ts_top; // pointer to the top of stack
2385  kmp_int32 ts_entries; // number of entries on the stack
2386 } kmp_task_stack_t;
2387 
2388 #endif // BUILD_TIED_TASK_STACK
2389 
2390 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2391  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2392  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2393  unsigned final : 1; /* task is final(1) so execute immediately */
2394  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2395  code path */
2396  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2397  invoke destructors from the runtime */
2398  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2399  context of the RTL) */
2400  unsigned priority_specified : 1; /* set if the compiler provides priority
2401  setting for the task */
2402  unsigned detachable : 1; /* 1 == can detach */
2403  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2404  unsigned reserved : 8; /* reserved for compiler use */
2405 
2406  /* Library flags */ /* Total library flags must be 16 bits */
2407  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2408  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2409  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2410  // (1) or may be deferred (0)
2411  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2412  // (0) [>= 2 threads]
2413  /* If either team_serial or tasking_ser is set, task team may be NULL */
2414  /* Task State Flags: */
2415  unsigned started : 1; /* 1==started, 0==not started */
2416  unsigned executing : 1; /* 1==executing, 0==not executing */
2417  unsigned complete : 1; /* 1==complete, 0==not complete */
2418  unsigned freed : 1; /* 1==freed, 0==allocated */
2419  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2420  unsigned reserved31 : 7; /* reserved for library use */
2421 
2422 } kmp_tasking_flags_t;
2423 
2424 struct kmp_taskdata { /* aligned during dynamic allocation */
2425  kmp_int32 td_task_id; /* id, assigned by debugger */
2426  kmp_tasking_flags_t td_flags; /* task flags */
2427  kmp_team_t *td_team; /* team for this task */
2428  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2429  /* Currently not used except for perhaps IDB */
2430  kmp_taskdata_t *td_parent; /* parent task */
2431  kmp_int32 td_level; /* task nesting level */
2432  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2433  ident_t *td_ident; /* task identifier */
2434  // Taskwait data.
2435  ident_t *td_taskwait_ident;
2436  kmp_uint32 td_taskwait_counter;
2437  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2438  KMP_ALIGN_CACHE kmp_internal_control_t
2439  td_icvs; /* Internal control variables for the task */
2440  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2441  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2442  deallocated */
2443  std::atomic<kmp_int32>
2444  td_incomplete_child_tasks; /* Child tasks not yet complete */
2445  kmp_taskgroup_t
2446  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2447  kmp_dephash_t
2448  *td_dephash; // Dependencies for children tasks are tracked from here
2449  kmp_depnode_t
2450  *td_depnode; // Pointer to graph node if this task has dependencies
2451  kmp_task_team_t *td_task_team;
2452  size_t td_size_alloc; // Size of task structure, including shareds etc.
2453 #if defined(KMP_GOMP_COMPAT)
2454  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2455  kmp_int32 td_size_loop_bounds;
2456 #endif
2457  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2458 #if defined(KMP_GOMP_COMPAT)
2459  // GOMP sends in a copy function for copy constructors
2460  void (*td_copy_func)(void *, void *);
2461 #endif
2462  kmp_event_t td_allow_completion_event;
2463 #if OMPT_SUPPORT
2464  ompt_task_info_t ompt_task_info;
2465 #endif
2466 }; // struct kmp_taskdata
2467 
2468 // Make sure padding above worked
2469 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2470 
2471 // Data for task team but per thread
2472 typedef struct kmp_base_thread_data {
2473  kmp_info_p *td_thr; // Pointer back to thread info
2474  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2475  // queued?
2476  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2477  kmp_taskdata_t *
2478  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2479  kmp_int32 td_deque_size; // Size of deck
2480  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2481  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2482  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2483  // GEH: shouldn't this be volatile since used in while-spin?
2484  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2485 #ifdef BUILD_TIED_TASK_STACK
2486  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2487 // scheduling constraint
2488 #endif // BUILD_TIED_TASK_STACK
2489 } kmp_base_thread_data_t;
2490 
2491 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2492 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2493 
2494 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2495 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2496 
2497 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2498  kmp_base_thread_data_t td;
2499  double td_align; /* use worst case alignment */
2500  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2501 } kmp_thread_data_t;
2502 
2503 // Data for task teams which are used when tasking is enabled for the team
2504 typedef struct kmp_base_task_team {
2505  kmp_bootstrap_lock_t
2506  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2507  /* must be bootstrap lock since used at library shutdown*/
2508  kmp_task_team_t *tt_next; /* For linking the task team free list */
2509  kmp_thread_data_t
2510  *tt_threads_data; /* Array of per-thread structures for task team */
2511  /* Data survives task team deallocation */
2512  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2513  executing this team? */
2514  /* TRUE means tt_threads_data is set up and initialized */
2515  kmp_int32 tt_nproc; /* #threads in team */
2516  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2517  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2518  kmp_int32 tt_untied_task_encountered;
2519  // There is hidden helper thread encountered in this task team so that we must
2520  // wait when waiting on task team
2521  kmp_int32 tt_hidden_helper_task_encountered;
2522 
2523  KMP_ALIGN_CACHE
2524  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2525 
2526  KMP_ALIGN_CACHE
2527  volatile kmp_uint32
2528  tt_active; /* is the team still actively executing tasks */
2529 } kmp_base_task_team_t;
2530 
2531 union KMP_ALIGN_CACHE kmp_task_team {
2532  kmp_base_task_team_t tt;
2533  double tt_align; /* use worst case alignment */
2534  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2535 };
2536 
2537 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2538 // Free lists keep same-size free memory slots for fast memory allocation
2539 // routines
2540 typedef struct kmp_free_list {
2541  void *th_free_list_self; // Self-allocated tasks free list
2542  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2543  // threads
2544  void *th_free_list_other; // Non-self free list (to be returned to owner's
2545  // sync list)
2546 } kmp_free_list_t;
2547 #endif
2548 #if KMP_NESTED_HOT_TEAMS
2549 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2550 // are not put in teams pool, and they don't put threads in threads pool.
2551 typedef struct kmp_hot_team_ptr {
2552  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2553  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2554 } kmp_hot_team_ptr_t;
2555 #endif
2556 typedef struct kmp_teams_size {
2557  kmp_int32 nteams; // number of teams in a league
2558  kmp_int32 nth; // number of threads in each team of the league
2559 } kmp_teams_size_t;
2560 
2561 // This struct stores a thread that acts as a "root" for a contention
2562 // group. Contention groups are rooted at kmp_root threads, but also at
2563 // each primary thread of each team created in the teams construct.
2564 // This struct therefore also stores a thread_limit associated with
2565 // that contention group, and a counter to track the number of threads
2566 // active in that contention group. Each thread has a list of these: CG
2567 // root threads have an entry in their list in which cg_root refers to
2568 // the thread itself, whereas other workers in the CG will have a
2569 // single entry where cg_root is same as the entry containing their CG
2570 // root. When a thread encounters a teams construct, it will add a new
2571 // entry to the front of its list, because it now roots a new CG.
2572 typedef struct kmp_cg_root {
2573  kmp_info_p *cg_root; // "root" thread for a contention group
2574  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2575  // thread_limit clause for teams primary threads
2576  kmp_int32 cg_thread_limit;
2577  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2578  struct kmp_cg_root *up; // pointer to higher level CG root in list
2579 } kmp_cg_root_t;
2580 
2581 // OpenMP thread data structures
2582 
2583 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2584  /* Start with the readonly data which is cache aligned and padded. This is
2585  written before the thread starts working by the primary thread. Uber
2586  masters may update themselves later. Usage does not consider serialized
2587  regions. */
2588  kmp_desc_t th_info;
2589  kmp_team_p *th_team; /* team we belong to */
2590  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2591  kmp_info_p *th_next_pool; /* next available thread in the pool */
2592  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2593  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2594 
2595  /* The following are cached from the team info structure */
2596  /* TODO use these in more places as determined to be needed via profiling */
2597  int th_team_nproc; /* number of threads in a team */
2598  kmp_info_p *th_team_master; /* the team's primary thread */
2599  int th_team_serialized; /* team is serialized */
2600  microtask_t th_teams_microtask; /* save entry address for teams construct */
2601  int th_teams_level; /* save initial level of teams construct */
2602 /* it is 0 on device but may be any on host */
2603 
2604 /* The blocktime info is copied from the team struct to the thread struct */
2605 /* at the start of a barrier, and the values stored in the team are used */
2606 /* at points in the code where the team struct is no longer guaranteed */
2607 /* to exist (from the POV of worker threads). */
2608 #if KMP_USE_MONITOR
2609  int th_team_bt_intervals;
2610  int th_team_bt_set;
2611 #else
2612  kmp_uint64 th_team_bt_intervals;
2613 #endif
2614 
2615 #if KMP_AFFINITY_SUPPORTED
2616  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2617 #endif
2618  omp_allocator_handle_t th_def_allocator; /* default allocator */
2619  /* The data set by the primary thread at reinit, then R/W by the worker */
2620  KMP_ALIGN_CACHE int
2621  th_set_nproc; /* if > 0, then only use this request for the next fork */
2622 #if KMP_NESTED_HOT_TEAMS
2623  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2624 #endif
2625  kmp_proc_bind_t
2626  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2627  kmp_teams_size_t
2628  th_teams_size; /* number of teams/threads in teams construct */
2629 #if KMP_AFFINITY_SUPPORTED
2630  int th_current_place; /* place currently bound to */
2631  int th_new_place; /* place to bind to in par reg */
2632  int th_first_place; /* first place in partition */
2633  int th_last_place; /* last place in partition */
2634 #endif
2635  int th_prev_level; /* previous level for affinity format */
2636  int th_prev_num_threads; /* previous num_threads for affinity format */
2637 #if USE_ITT_BUILD
2638  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2639  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2640  kmp_uint64 th_frame_time; /* frame timestamp */
2641 #endif /* USE_ITT_BUILD */
2642  kmp_local_t th_local;
2643  struct private_common *th_pri_head;
2644 
2645  /* Now the data only used by the worker (after initial allocation) */
2646  /* TODO the first serial team should actually be stored in the info_t
2647  structure. this will help reduce initial allocation overhead */
2648  KMP_ALIGN_CACHE kmp_team_p
2649  *th_serial_team; /*serialized team held in reserve*/
2650 
2651 #if OMPT_SUPPORT
2652  ompt_thread_info_t ompt_thread_info;
2653 #endif
2654 
2655  /* The following are also read by the primary thread during reinit */
2656  struct common_table *th_pri_common;
2657 
2658  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2659  /* while awaiting queuing lock acquire */
2660 
2661  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2662  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2663 
2664  ident_t *th_ident;
2665  unsigned th_x; // Random number generator data
2666  unsigned th_a; // Random number generator data
2667 
2668  /* Tasking-related data for the thread */
2669  kmp_task_team_t *th_task_team; // Task team struct
2670  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2671  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2672  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2673  // at nested levels
2674  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2675  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2676  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2677  // tasking, thus safe to reap
2678 
2679  /* More stuff for keeping track of active/sleeping threads (this part is
2680  written by the worker thread) */
2681  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2682  int th_active; // ! sleeping; 32 bits for TCR/TCW
2683  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2684  // 0 = not used in team; 1 = used in team;
2685  // 2 = transitioning to not used in team; 3 = transitioning to used in team
2686  struct cons_header *th_cons; // used for consistency check
2687 #if KMP_USE_HIER_SCHED
2688  // used for hierarchical scheduling
2689  kmp_hier_private_bdata_t *th_hier_bar_data;
2690 #endif
2691 
2692  /* Add the syncronizing data which is cache aligned and padded. */
2693  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2694 
2695  KMP_ALIGN_CACHE volatile kmp_int32
2696  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2697 
2698 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2699 #define NUM_LISTS 4
2700  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2701 // allocation routines
2702 #endif
2703 
2704 #if KMP_OS_WINDOWS
2705  kmp_win32_cond_t th_suspend_cv;
2706  kmp_win32_mutex_t th_suspend_mx;
2707  std::atomic<int> th_suspend_init;
2708 #endif
2709 #if KMP_OS_UNIX
2710  kmp_cond_align_t th_suspend_cv;
2711  kmp_mutex_align_t th_suspend_mx;
2712  std::atomic<int> th_suspend_init_count;
2713 #endif
2714 
2715 #if USE_ITT_BUILD
2716  kmp_itt_mark_t th_itt_mark_single;
2717 // alignment ???
2718 #endif /* USE_ITT_BUILD */
2719 #if KMP_STATS_ENABLED
2720  kmp_stats_list *th_stats;
2721 #endif
2722 #if KMP_OS_UNIX
2723  std::atomic<bool> th_blocking;
2724 #endif
2725  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2726 } kmp_base_info_t;
2727 
2728 typedef union KMP_ALIGN_CACHE kmp_info {
2729  double th_align; /* use worst case alignment */
2730  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2731  kmp_base_info_t th;
2732 } kmp_info_t;
2733 
2734 // OpenMP thread team data structures
2735 
2736 typedef struct kmp_base_data {
2737  volatile kmp_uint32 t_value;
2738 } kmp_base_data_t;
2739 
2740 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2741  double dt_align; /* use worst case alignment */
2742  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2743  kmp_base_data_t dt;
2744 } kmp_sleep_team_t;
2745 
2746 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2747  double dt_align; /* use worst case alignment */
2748  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2749  kmp_base_data_t dt;
2750 } kmp_ordered_team_t;
2751 
2752 typedef int (*launch_t)(int gtid);
2753 
2754 /* Minimum number of ARGV entries to malloc if necessary */
2755 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2756 
2757 // Set up how many argv pointers will fit in cache lines containing
2758 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2759 // larger value for more space between the primary write/worker read section and
2760 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2761 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2762 #define KMP_INLINE_ARGV_BYTES \
2763  (4 * CACHE_LINE - \
2764  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2765  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2766  CACHE_LINE))
2767 #else
2768 #define KMP_INLINE_ARGV_BYTES \
2769  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2770 #endif
2771 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2772 
2773 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2774  // Synchronization Data
2775  // ---------------------------------------------------------------------------
2776  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2777  kmp_balign_team_t t_bar[bs_last_barrier];
2778  std::atomic<int> t_construct; // count of single directive encountered by team
2779  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2780 
2781  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2782  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2783  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2784 
2785  // Primary thread only
2786  // ---------------------------------------------------------------------------
2787  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2788  int t_master_this_cons; // "this_construct" single counter of primary thread
2789  // in parent team
2790  ident_t *t_ident; // if volatile, have to change too much other crud to
2791  // volatile too
2792  kmp_team_p *t_parent; // parent team
2793  kmp_team_p *t_next_pool; // next free team in the team pool
2794  kmp_disp_t *t_dispatch; // thread's dispatch data
2795  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2796  kmp_proc_bind_t t_proc_bind; // bind type for par region
2797 #if USE_ITT_BUILD
2798  kmp_uint64 t_region_time; // region begin timestamp
2799 #endif /* USE_ITT_BUILD */
2800 
2801  // Primary thread write, workers read
2802  // --------------------------------------------------------------------------
2803  KMP_ALIGN_CACHE void **t_argv;
2804  int t_argc;
2805  int t_nproc; // number of threads in team
2806  microtask_t t_pkfn;
2807  launch_t t_invoke; // procedure to launch the microtask
2808 
2809 #if OMPT_SUPPORT
2810  ompt_team_info_t ompt_team_info;
2811  ompt_lw_taskteam_t *ompt_serialized_team_info;
2812 #endif
2813 
2814 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2815  kmp_int8 t_fp_control_saved;
2816  kmp_int8 t_pad2b;
2817  kmp_int16 t_x87_fpu_control_word; // FP control regs
2818  kmp_uint32 t_mxcsr;
2819 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2820 
2821  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2822 
2823  KMP_ALIGN_CACHE kmp_info_t **t_threads;
2824  kmp_taskdata_t
2825  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2826  int t_level; // nested parallel level
2827 
2828  KMP_ALIGN_CACHE int t_max_argc;
2829  int t_max_nproc; // max threads this team can handle (dynamically expandable)
2830  int t_serialized; // levels deep of serialized teams
2831  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2832  int t_id; // team's id, assigned by debugger.
2833  int t_active_level; // nested active parallel level
2834  kmp_r_sched_t t_sched; // run-time schedule for the team
2835 #if KMP_AFFINITY_SUPPORTED
2836  int t_first_place; // first & last place in parent thread's partition.
2837  int t_last_place; // Restore these values to primary thread after par region.
2838 #endif // KMP_AFFINITY_SUPPORTED
2839  int t_display_affinity;
2840  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2841  // omp_set_num_threads() call
2842  omp_allocator_handle_t t_def_allocator; /* default allocator */
2843 
2844 // Read/write by workers as well
2845 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2846  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2847  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2848  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2849  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2850  char dummy_padding[1024];
2851 #endif
2852  // Internal control stack for additional nested teams.
2853  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2854  // for SERIALIZED teams nested 2 or more levels deep
2855  // typed flag to store request state of cancellation
2856  std::atomic<kmp_int32> t_cancel_request;
2857  int t_master_active; // save on fork, restore on join
2858  void *t_copypriv_data; // team specific pointer to copyprivate data array
2859 #if KMP_OS_WINDOWS
2860  std::atomic<kmp_uint32> t_copyin_counter;
2861 #endif
2862 #if USE_ITT_BUILD
2863  void *t_stack_id; // team specific stack stitching id (for ittnotify)
2864 #endif /* USE_ITT_BUILD */
2865  distributedBarrier *b; // Distributed barrier data associated with team
2866 } kmp_base_team_t;
2867 
2868 union KMP_ALIGN_CACHE kmp_team {
2869  kmp_base_team_t t;
2870  double t_align; /* use worst case alignment */
2871  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2872 };
2873 
2874 typedef union KMP_ALIGN_CACHE kmp_time_global {
2875  double dt_align; /* use worst case alignment */
2876  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2877  kmp_base_data_t dt;
2878 } kmp_time_global_t;
2879 
2880 typedef struct kmp_base_global {
2881  /* cache-aligned */
2882  kmp_time_global_t g_time;
2883 
2884  /* non cache-aligned */
2885  volatile int g_abort;
2886  volatile int g_done;
2887 
2888  int g_dynamic;
2889  enum dynamic_mode g_dynamic_mode;
2890 } kmp_base_global_t;
2891 
2892 typedef union KMP_ALIGN_CACHE kmp_global {
2893  kmp_base_global_t g;
2894  double g_align; /* use worst case alignment */
2895  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2896 } kmp_global_t;
2897 
2898 typedef struct kmp_base_root {
2899  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2900  // (r_in_parallel>= 0)
2901  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2902  // the synch overhead or keeping r_active
2903  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2904  // keeps a count of active parallel regions per root
2905  std::atomic<int> r_in_parallel;
2906  // GEH: This is misnamed, should be r_active_levels
2907  kmp_team_t *r_root_team;
2908  kmp_team_t *r_hot_team;
2909  kmp_info_t *r_uber_thread;
2910  kmp_lock_t r_begin_lock;
2911  volatile int r_begin;
2912  int r_blocktime; /* blocktime for this root and descendants */
2913 #if KMP_AFFINITY_SUPPORTED
2914  int r_affinity_assigned;
2915 #endif // KMP_AFFINITY_SUPPORTED
2916 } kmp_base_root_t;
2917 
2918 typedef union KMP_ALIGN_CACHE kmp_root {
2919  kmp_base_root_t r;
2920  double r_align; /* use worst case alignment */
2921  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2922 } kmp_root_t;
2923 
2924 struct fortran_inx_info {
2925  kmp_int32 data;
2926 };
2927 
2928 /* ------------------------------------------------------------------------ */
2929 
2930 extern int __kmp_settings;
2931 extern int __kmp_duplicate_library_ok;
2932 #if USE_ITT_BUILD
2933 extern int __kmp_forkjoin_frames;
2934 extern int __kmp_forkjoin_frames_mode;
2935 #endif
2936 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2937 extern int __kmp_determ_red;
2938 
2939 #ifdef KMP_DEBUG
2940 extern int kmp_a_debug;
2941 extern int kmp_b_debug;
2942 extern int kmp_c_debug;
2943 extern int kmp_d_debug;
2944 extern int kmp_e_debug;
2945 extern int kmp_f_debug;
2946 #endif /* KMP_DEBUG */
2947 
2948 /* For debug information logging using rotating buffer */
2949 #define KMP_DEBUG_BUF_LINES_INIT 512
2950 #define KMP_DEBUG_BUF_LINES_MIN 1
2951 
2952 #define KMP_DEBUG_BUF_CHARS_INIT 128
2953 #define KMP_DEBUG_BUF_CHARS_MIN 2
2954 
2955 extern int
2956  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2957 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2958 extern int
2959  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2960 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2961  entry pointer */
2962 
2963 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2964 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2965  printed in buffer so far */
2966 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2967  recommended in warnings */
2968 /* end rotating debug buffer */
2969 
2970 #ifdef KMP_DEBUG
2971 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2972 
2973 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2974 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2975 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2976 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2977 extern int __kmp_par_range_lb;
2978 extern int __kmp_par_range_ub;
2979 #endif
2980 
2981 /* For printing out dynamic storage map for threads and teams */
2982 extern int
2983  __kmp_storage_map; /* True means print storage map for threads and teams */
2984 extern int __kmp_storage_map_verbose; /* True means storage map includes
2985  placement info */
2986 extern int __kmp_storage_map_verbose_specified;
2987 
2988 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2989 extern kmp_cpuinfo_t __kmp_cpuinfo;
2990 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
2991 #else
2992 static inline bool __kmp_is_hybrid_cpu() { return false; }
2993 #endif
2994 
2995 extern volatile int __kmp_init_serial;
2996 extern volatile int __kmp_init_gtid;
2997 extern volatile int __kmp_init_common;
2998 extern volatile int __kmp_init_middle;
2999 extern volatile int __kmp_init_parallel;
3000 #if KMP_USE_MONITOR
3001 extern volatile int __kmp_init_monitor;
3002 #endif
3003 extern volatile int __kmp_init_user_locks;
3004 extern volatile int __kmp_init_hidden_helper_threads;
3005 extern int __kmp_init_counter;
3006 extern int __kmp_root_counter;
3007 extern int __kmp_version;
3008 
3009 /* list of address of allocated caches for commons */
3010 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3011 
3012 /* Barrier algorithm types and options */
3013 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3014 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3015 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3016 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3017 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3018 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3019 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3020 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3021 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3022 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3023 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3024 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3025 
3026 /* Global Locks */
3027 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3028 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3029 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3030 extern kmp_bootstrap_lock_t
3031  __kmp_exit_lock; /* exit() is not always thread-safe */
3032 #if KMP_USE_MONITOR
3033 extern kmp_bootstrap_lock_t
3034  __kmp_monitor_lock; /* control monitor thread creation */
3035 #endif
3036 extern kmp_bootstrap_lock_t
3037  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3038  __kmp_threads expansion to co-exist */
3039 
3040 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3041 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3042 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3043 
3044 extern enum library_type __kmp_library;
3045 
3046 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3047 extern enum sched_type __kmp_static; /* default static scheduling method */
3048 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3049 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3050 extern int __kmp_chunk; /* default runtime chunk size */
3051 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3052 
3053 extern size_t __kmp_stksize; /* stack size per thread */
3054 #if KMP_USE_MONITOR
3055 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3056 #endif
3057 extern size_t __kmp_stkoffset; /* stack offset per thread */
3058 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3059 
3060 extern size_t
3061  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3062 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3063 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3064 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3065 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3066 extern int __kmp_generate_warnings; /* should we issue warnings? */
3067 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3068 
3069 #ifdef DEBUG_SUSPEND
3070 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3071 #endif
3072 
3073 extern kmp_int32 __kmp_use_yield;
3074 extern kmp_int32 __kmp_use_yield_exp_set;
3075 extern kmp_uint32 __kmp_yield_init;
3076 extern kmp_uint32 __kmp_yield_next;
3077 
3078 /* ------------------------------------------------------------------------- */
3079 extern int __kmp_allThreadsSpecified;
3080 
3081 extern size_t __kmp_align_alloc;
3082 /* following data protected by initialization routines */
3083 extern int __kmp_xproc; /* number of processors in the system */
3084 extern int __kmp_avail_proc; /* number of processors available to the process */
3085 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3086 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3087 // maximum total number of concurrently-existing threads on device
3088 extern int __kmp_max_nth;
3089 // maximum total number of concurrently-existing threads in a contention group
3090 extern int __kmp_cg_max_nth;
3091 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3092 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3093  __kmp_root */
3094 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3095  region a la OMP_NUM_THREADS */
3096 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3097  initialization */
3098 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3099  used (fixed) */
3100 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3101  (__kmpc_threadprivate_cached()) */
3102 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3103  blocking (env setting) */
3104 #if KMP_USE_MONITOR
3105 extern int
3106  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3107 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3108  blocking */
3109 #endif
3110 #ifdef KMP_ADJUST_BLOCKTIME
3111 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3112 #endif /* KMP_ADJUST_BLOCKTIME */
3113 #ifdef KMP_DFLT_NTH_CORES
3114 extern int __kmp_ncores; /* Total number of cores for threads placement */
3115 #endif
3116 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3117 extern int __kmp_abort_delay;
3118 
3119 extern int __kmp_need_register_atfork_specified;
3120 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3121  to install fork handler */
3122 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3123  0 - not set, will be set at runtime
3124  1 - using stack search
3125  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3126  X*) or TlsGetValue(Windows* OS))
3127  3 - static TLS (__declspec(thread) __kmp_gtid),
3128  Linux* OS .so only. */
3129 extern int
3130  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3131 #ifdef KMP_TDATA_GTID
3132 extern KMP_THREAD_LOCAL int __kmp_gtid;
3133 #endif
3134 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3135 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3136 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3137 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3138 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3139 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3140 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3141 
3142 // max_active_levels for nested parallelism enabled by default via
3143 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3144 extern int __kmp_dflt_max_active_levels;
3145 // Indicates whether value of __kmp_dflt_max_active_levels was already
3146 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3147 extern bool __kmp_dflt_max_active_levels_set;
3148 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3149  concurrent execution per team */
3150 #if KMP_NESTED_HOT_TEAMS
3151 extern int __kmp_hot_teams_mode;
3152 extern int __kmp_hot_teams_max_level;
3153 #endif
3154 
3155 #if KMP_OS_LINUX
3156 extern enum clock_function_type __kmp_clock_function;
3157 extern int __kmp_clock_function_param;
3158 #endif /* KMP_OS_LINUX */
3159 
3160 #if KMP_MIC_SUPPORTED
3161 extern enum mic_type __kmp_mic_type;
3162 #endif
3163 
3164 #ifdef USE_LOAD_BALANCE
3165 extern double __kmp_load_balance_interval; // load balance algorithm interval
3166 #endif /* USE_LOAD_BALANCE */
3167 
3168 // OpenMP 3.1 - Nested num threads array
3169 typedef struct kmp_nested_nthreads_t {
3170  int *nth;
3171  int size;
3172  int used;
3173 } kmp_nested_nthreads_t;
3174 
3175 extern kmp_nested_nthreads_t __kmp_nested_nth;
3176 
3177 #if KMP_USE_ADAPTIVE_LOCKS
3178 
3179 // Parameters for the speculative lock backoff system.
3180 struct kmp_adaptive_backoff_params_t {
3181  // Number of soft retries before it counts as a hard retry.
3182  kmp_uint32 max_soft_retries;
3183  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3184  // the right
3185  kmp_uint32 max_badness;
3186 };
3187 
3188 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3189 
3190 #if KMP_DEBUG_ADAPTIVE_LOCKS
3191 extern const char *__kmp_speculative_statsfile;
3192 #endif
3193 
3194 #endif // KMP_USE_ADAPTIVE_LOCKS
3195 
3196 extern int __kmp_display_env; /* TRUE or FALSE */
3197 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3198 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3199 extern int __kmp_nteams;
3200 extern int __kmp_teams_thread_limit;
3201 
3202 /* ------------------------------------------------------------------------- */
3203 
3204 /* the following are protected by the fork/join lock */
3205 /* write: lock read: anytime */
3206 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3207 /* read/write: lock */
3208 extern volatile kmp_team_t *__kmp_team_pool;
3209 extern volatile kmp_info_t *__kmp_thread_pool;
3210 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3211 
3212 // total num threads reachable from some root thread including all root threads
3213 extern volatile int __kmp_nth;
3214 /* total number of threads reachable from some root thread including all root
3215  threads, and those in the thread pool */
3216 extern volatile int __kmp_all_nth;
3217 extern std::atomic<int> __kmp_thread_pool_active_nth;
3218 
3219 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3220 /* end data protected by fork/join lock */
3221 /* ------------------------------------------------------------------------- */
3222 
3223 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3224 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3225 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3226 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3227 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3228 
3229 // AT: Which way is correct?
3230 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3231 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3232 #define __kmp_get_team_num_threads(gtid) \
3233  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3234 
3235 static inline bool KMP_UBER_GTID(int gtid) {
3236  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3237  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3238  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3239  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3240 }
3241 
3242 static inline int __kmp_tid_from_gtid(int gtid) {
3243  KMP_DEBUG_ASSERT(gtid >= 0);
3244  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3245 }
3246 
3247 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3248  KMP_DEBUG_ASSERT(tid >= 0 && team);
3249  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3250 }
3251 
3252 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3253  KMP_DEBUG_ASSERT(thr);
3254  return thr->th.th_info.ds.ds_gtid;
3255 }
3256 
3257 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3258  KMP_DEBUG_ASSERT(gtid >= 0);
3259  return __kmp_threads[gtid];
3260 }
3261 
3262 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3263  KMP_DEBUG_ASSERT(gtid >= 0);
3264  return __kmp_threads[gtid]->th.th_team;
3265 }
3266 
3267 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3268  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3269  KMP_FATAL(ThreadIdentInvalid);
3270 }
3271 
3272 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3273 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3274 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3275 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3276 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3277 #endif
3278 
3279 /* ------------------------------------------------------------------------- */
3280 
3281 extern kmp_global_t __kmp_global; /* global status */
3282 
3283 extern kmp_info_t __kmp_monitor;
3284 // For Debugging Support Library
3285 extern std::atomic<kmp_int32> __kmp_team_counter;
3286 // For Debugging Support Library
3287 extern std::atomic<kmp_int32> __kmp_task_counter;
3288 
3289 #if USE_DEBUGGER
3290 #define _KMP_GEN_ID(counter) \
3291  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3292 #else
3293 #define _KMP_GEN_ID(counter) (~0)
3294 #endif /* USE_DEBUGGER */
3295 
3296 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3297 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3298 
3299 /* ------------------------------------------------------------------------ */
3300 
3301 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3302  size_t size, char const *format, ...);
3303 
3304 extern void __kmp_serial_initialize(void);
3305 extern void __kmp_middle_initialize(void);
3306 extern void __kmp_parallel_initialize(void);
3307 
3308 extern void __kmp_internal_begin(void);
3309 extern void __kmp_internal_end_library(int gtid);
3310 extern void __kmp_internal_end_thread(int gtid);
3311 extern void __kmp_internal_end_atexit(void);
3312 extern void __kmp_internal_end_dtor(void);
3313 extern void __kmp_internal_end_dest(void *);
3314 
3315 extern int __kmp_register_root(int initial_thread);
3316 extern void __kmp_unregister_root(int gtid);
3317 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3318 
3319 extern int __kmp_ignore_mppbeg(void);
3320 extern int __kmp_ignore_mppend(void);
3321 
3322 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3323 extern void __kmp_exit_single(int gtid);
3324 
3325 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3326 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3327 
3328 #ifdef USE_LOAD_BALANCE
3329 extern int __kmp_get_load_balance(int);
3330 #endif
3331 
3332 extern int __kmp_get_global_thread_id(void);
3333 extern int __kmp_get_global_thread_id_reg(void);
3334 extern void __kmp_exit_thread(int exit_status);
3335 extern void __kmp_abort(char const *format, ...);
3336 extern void __kmp_abort_thread(void);
3337 KMP_NORETURN extern void __kmp_abort_process(void);
3338 extern void __kmp_warn(char const *format, ...);
3339 
3340 extern void __kmp_set_num_threads(int new_nth, int gtid);
3341 
3342 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3343 // registered.
3344 static inline kmp_info_t *__kmp_entry_thread() {
3345  int gtid = __kmp_entry_gtid();
3346 
3347  return __kmp_threads[gtid];
3348 }
3349 
3350 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3351 extern int __kmp_get_max_active_levels(int gtid);
3352 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3353 extern int __kmp_get_team_size(int gtid, int level);
3354 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3355 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3356 
3357 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3358 extern void __kmp_init_random(kmp_info_t *thread);
3359 
3360 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3361 extern void __kmp_adjust_num_threads(int new_nproc);
3362 extern void __kmp_check_stksize(size_t *val);
3363 
3364 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3365 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3366 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3367 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3368 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3369 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3370 
3371 #if USE_FAST_MEMORY
3372 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3373  size_t size KMP_SRC_LOC_DECL);
3374 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3375 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3376 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3377 #define __kmp_fast_allocate(this_thr, size) \
3378  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3379 #define __kmp_fast_free(this_thr, ptr) \
3380  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3381 #endif
3382 
3383 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3384 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3385  size_t elsize KMP_SRC_LOC_DECL);
3386 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3387  size_t size KMP_SRC_LOC_DECL);
3388 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3389 #define __kmp_thread_malloc(th, size) \
3390  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3391 #define __kmp_thread_calloc(th, nelem, elsize) \
3392  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3393 #define __kmp_thread_realloc(th, ptr, size) \
3394  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3395 #define __kmp_thread_free(th, ptr) \
3396  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3397 
3398 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3399 #define KMP_INTERNAL_FREE(p) free(p)
3400 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3401 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3402 
3403 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3404 
3405 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3406  kmp_proc_bind_t proc_bind);
3407 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3408  int num_threads);
3409 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3410  int num_teams_ub, int num_threads);
3411 
3412 extern void __kmp_yield();
3413 
3414 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3415  enum sched_type schedule, kmp_int32 lb,
3416  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3417 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3418  enum sched_type schedule, kmp_uint32 lb,
3419  kmp_uint32 ub, kmp_int32 st,
3420  kmp_int32 chunk);
3421 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3422  enum sched_type schedule, kmp_int64 lb,
3423  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3424 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3425  enum sched_type schedule, kmp_uint64 lb,
3426  kmp_uint64 ub, kmp_int64 st,
3427  kmp_int64 chunk);
3428 
3429 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3430  kmp_int32 *p_last, kmp_int32 *p_lb,
3431  kmp_int32 *p_ub, kmp_int32 *p_st);
3432 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3433  kmp_int32 *p_last, kmp_uint32 *p_lb,
3434  kmp_uint32 *p_ub, kmp_int32 *p_st);
3435 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3436  kmp_int32 *p_last, kmp_int64 *p_lb,
3437  kmp_int64 *p_ub, kmp_int64 *p_st);
3438 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3439  kmp_int32 *p_last, kmp_uint64 *p_lb,
3440  kmp_uint64 *p_ub, kmp_int64 *p_st);
3441 
3442 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3443 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3444 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3445 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3446 
3447 #ifdef KMP_GOMP_COMPAT
3448 
3449 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3450  enum sched_type schedule, kmp_int32 lb,
3451  kmp_int32 ub, kmp_int32 st,
3452  kmp_int32 chunk, int push_ws);
3453 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3454  enum sched_type schedule, kmp_uint32 lb,
3455  kmp_uint32 ub, kmp_int32 st,
3456  kmp_int32 chunk, int push_ws);
3457 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3458  enum sched_type schedule, kmp_int64 lb,
3459  kmp_int64 ub, kmp_int64 st,
3460  kmp_int64 chunk, int push_ws);
3461 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3462  enum sched_type schedule, kmp_uint64 lb,
3463  kmp_uint64 ub, kmp_int64 st,
3464  kmp_int64 chunk, int push_ws);
3465 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3466 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3467 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3468 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3469 
3470 #endif /* KMP_GOMP_COMPAT */
3471 
3472 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3473 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3474 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3475 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3476 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3477 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3478  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3479  void *obj);
3480 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3481  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3482 
3483 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3484  int final_spin
3485 #if USE_ITT_BUILD
3486  ,
3487  void *itt_sync_obj
3488 #endif
3489 );
3490 extern void __kmp_release_64(kmp_flag_64<> *flag);
3491 
3492 extern void __kmp_infinite_loop(void);
3493 
3494 extern void __kmp_cleanup(void);
3495 
3496 #if KMP_HANDLE_SIGNALS
3497 extern int __kmp_handle_signals;
3498 extern void __kmp_install_signals(int parallel_init);
3499 extern void __kmp_remove_signals(void);
3500 #endif
3501 
3502 extern void __kmp_clear_system_time(void);
3503 extern void __kmp_read_system_time(double *delta);
3504 
3505 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3506 
3507 extern void __kmp_expand_host_name(char *buffer, size_t size);
3508 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3509 
3510 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3511 extern void
3512 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3513 #endif
3514 
3515 extern void
3516 __kmp_runtime_initialize(void); /* machine specific initialization */
3517 extern void __kmp_runtime_destroy(void);
3518 
3519 #if KMP_AFFINITY_SUPPORTED
3520 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3521  kmp_affin_mask_t *mask);
3522 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3523  kmp_affin_mask_t *mask);
3524 extern void __kmp_affinity_initialize(void);
3525 extern void __kmp_affinity_uninitialize(void);
3526 extern void __kmp_affinity_set_init_mask(
3527  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3528 extern void __kmp_affinity_set_place(int gtid);
3529 extern void __kmp_affinity_determine_capable(const char *env_var);
3530 extern int __kmp_aux_set_affinity(void **mask);
3531 extern int __kmp_aux_get_affinity(void **mask);
3532 extern int __kmp_aux_get_affinity_max_proc();
3533 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3534 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3535 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3536 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3537 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3538 extern int kmp_set_thread_affinity_mask_initial(void);
3539 #endif
3540 static inline void __kmp_assign_root_init_mask() {
3541  int gtid = __kmp_entry_gtid();
3542  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3543  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3544  __kmp_affinity_set_init_mask(gtid, TRUE);
3545  r->r.r_affinity_assigned = TRUE;
3546  }
3547 }
3548 #else /* KMP_AFFINITY_SUPPORTED */
3549 #define __kmp_assign_root_init_mask() /* Nothing */
3550 #endif /* KMP_AFFINITY_SUPPORTED */
3551 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3552 // format string is for affinity, so platforms that do not support
3553 // affinity can still use the other fields, e.g., %n for num_threads
3554 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3555  kmp_str_buf_t *buffer);
3556 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3557 
3558 extern void __kmp_cleanup_hierarchy();
3559 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3560 
3561 #if KMP_USE_FUTEX
3562 
3563 extern int __kmp_futex_determine_capable(void);
3564 
3565 #endif // KMP_USE_FUTEX
3566 
3567 extern void __kmp_gtid_set_specific(int gtid);
3568 extern int __kmp_gtid_get_specific(void);
3569 
3570 extern double __kmp_read_cpu_time(void);
3571 
3572 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3573 
3574 #if KMP_USE_MONITOR
3575 extern void __kmp_create_monitor(kmp_info_t *th);
3576 #endif
3577 
3578 extern void *__kmp_launch_thread(kmp_info_t *thr);
3579 
3580 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3581 
3582 #if KMP_OS_WINDOWS
3583 extern int __kmp_still_running(kmp_info_t *th);
3584 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3585 extern void __kmp_free_handle(kmp_thread_t tHandle);
3586 #endif
3587 
3588 #if KMP_USE_MONITOR
3589 extern void __kmp_reap_monitor(kmp_info_t *th);
3590 #endif
3591 extern void __kmp_reap_worker(kmp_info_t *th);
3592 extern void __kmp_terminate_thread(int gtid);
3593 
3594 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3595 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3596 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3597 
3598 extern void __kmp_elapsed(double *);
3599 extern void __kmp_elapsed_tick(double *);
3600 
3601 extern void __kmp_enable(int old_state);
3602 extern void __kmp_disable(int *old_state);
3603 
3604 extern void __kmp_thread_sleep(int millis);
3605 
3606 extern void __kmp_common_initialize(void);
3607 extern void __kmp_common_destroy(void);
3608 extern void __kmp_common_destroy_gtid(int gtid);
3609 
3610 #if KMP_OS_UNIX
3611 extern void __kmp_register_atfork(void);
3612 #endif
3613 extern void __kmp_suspend_initialize(void);
3614 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3615 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3616 
3617 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3618  int tid);
3619 extern kmp_team_t *
3620 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3621 #if OMPT_SUPPORT
3622  ompt_data_t ompt_parallel_data,
3623 #endif
3624  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3625  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3626 extern void __kmp_free_thread(kmp_info_t *);
3627 extern void __kmp_free_team(kmp_root_t *,
3628  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3629 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3630 
3631 /* ------------------------------------------------------------------------ */
3632 
3633 extern void __kmp_initialize_bget(kmp_info_t *th);
3634 extern void __kmp_finalize_bget(kmp_info_t *th);
3635 
3636 KMP_EXPORT void *kmpc_malloc(size_t size);
3637 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3638 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3639 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3640 KMP_EXPORT void kmpc_free(void *ptr);
3641 
3642 /* declarations for internal use */
3643 
3644 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3645  size_t reduce_size, void *reduce_data,
3646  void (*reduce)(void *, void *));
3647 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3648 extern int __kmp_barrier_gomp_cancel(int gtid);
3649 
3654 enum fork_context_e {
3655  fork_context_gnu,
3657  fork_context_intel,
3658  fork_context_last
3659 };
3660 extern int __kmp_fork_call(ident_t *loc, int gtid,
3661  enum fork_context_e fork_context, kmp_int32 argc,
3662  microtask_t microtask, launch_t invoker,
3663  kmp_va_list ap);
3664 
3665 extern void __kmp_join_call(ident_t *loc, int gtid
3666 #if OMPT_SUPPORT
3667  ,
3668  enum fork_context_e fork_context
3669 #endif
3670  ,
3671  int exit_teams = 0);
3672 
3673 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3674 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3675 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3676 extern int __kmp_invoke_task_func(int gtid);
3677 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3678  kmp_info_t *this_thr,
3679  kmp_team_t *team);
3680 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3681  kmp_info_t *this_thr,
3682  kmp_team_t *team);
3683 
3684 // should never have been exported
3685 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3686 extern int __kmp_invoke_teams_master(int gtid);
3687 extern void __kmp_teams_master(int gtid);
3688 extern int __kmp_aux_get_team_num();
3689 extern int __kmp_aux_get_num_teams();
3690 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3691 extern void __kmp_user_set_library(enum library_type arg);
3692 extern void __kmp_aux_set_library(enum library_type arg);
3693 extern void __kmp_aux_set_stacksize(size_t arg);
3694 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3695 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3696 
3697 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3698 void kmpc_set_blocktime(int arg);
3699 void ompc_set_nested(int flag);
3700 void ompc_set_dynamic(int flag);
3701 void ompc_set_num_threads(int arg);
3702 
3703 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3704  kmp_team_t *team, int tid);
3705 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3706 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3707  kmp_tasking_flags_t *flags,
3708  size_t sizeof_kmp_task_t,
3709  size_t sizeof_shareds,
3710  kmp_routine_entry_t task_entry);
3711 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3712  kmp_team_t *team, int tid,
3713  int set_curr_task);
3714 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3715 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3716 
3717 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3718  int gtid,
3719  kmp_task_t *task);
3720 extern void __kmp_fulfill_event(kmp_event_t *event);
3721 
3722 extern void __kmp_free_task_team(kmp_info_t *thread,
3723  kmp_task_team_t *task_team);
3724 extern void __kmp_reap_task_teams(void);
3725 extern void __kmp_wait_to_unref_task_teams(void);
3726 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3727  int always);
3728 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3729 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3730 #if USE_ITT_BUILD
3731  ,
3732  void *itt_sync_obj
3733 #endif /* USE_ITT_BUILD */
3734  ,
3735  int wait = 1);
3736 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3737  int gtid);
3738 
3739 extern int __kmp_is_address_mapped(void *addr);
3740 extern kmp_uint64 __kmp_hardware_timestamp(void);
3741 
3742 #if KMP_OS_UNIX
3743 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3744 #endif
3745 
3746 /* ------------------------------------------------------------------------ */
3747 //
3748 // Assembly routines that have no compiler intrinsic replacement
3749 //
3750 
3751 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3752  void *argv[]
3753 #if OMPT_SUPPORT
3754  ,
3755  void **exit_frame_ptr
3756 #endif
3757 );
3758 
3759 /* ------------------------------------------------------------------------ */
3760 
3761 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3762 KMP_EXPORT void __kmpc_end(ident_t *);
3763 
3764 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3765  kmpc_ctor_vec ctor,
3766  kmpc_cctor_vec cctor,
3767  kmpc_dtor_vec dtor,
3768  size_t vector_length);
3769 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3770  kmpc_ctor ctor, kmpc_cctor cctor,
3771  kmpc_dtor dtor);
3772 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3773  void *data, size_t size);
3774 
3775 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3776 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3777 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3778 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3779 
3780 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3781 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3782  kmpc_micro microtask, ...);
3783 
3784 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3785 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3786 
3787 KMP_EXPORT void __kmpc_flush(ident_t *);
3788 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3789 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3790 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3791 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3792  kmp_int32 filter);
3793 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3794 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3795 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3796 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3797  kmp_critical_name *);
3798 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3799  kmp_critical_name *);
3800 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3801  kmp_critical_name *, uint32_t hint);
3802 
3803 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3804 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3805 
3806 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3807  kmp_int32 global_tid);
3808 
3809 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3810 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3811 
3812 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3813  kmp_int32 schedtype, kmp_int32 *plastiter,
3814  kmp_int *plower, kmp_int *pupper,
3815  kmp_int *pstride, kmp_int incr,
3816  kmp_int chunk);
3817 
3818 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3819 
3820 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3821  size_t cpy_size, void *cpy_data,
3822  void (*cpy_func)(void *, void *),
3823  kmp_int32 didit);
3824 
3825 extern void KMPC_SET_NUM_THREADS(int arg);
3826 extern void KMPC_SET_DYNAMIC(int flag);
3827 extern void KMPC_SET_NESTED(int flag);
3828 
3829 /* OMP 3.0 tasking interface routines */
3830 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3831  kmp_task_t *new_task);
3832 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3833  kmp_int32 flags,
3834  size_t sizeof_kmp_task_t,
3835  size_t sizeof_shareds,
3836  kmp_routine_entry_t task_entry);
3837 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3838  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3839  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3840 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3841  kmp_task_t *task);
3842 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3843  kmp_task_t *task);
3844 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3845  kmp_task_t *new_task);
3846 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3847 
3848 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3849  int end_part);
3850 
3851 #if TASK_UNUSED
3852 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3853 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3854  kmp_task_t *task);
3855 #endif // TASK_UNUSED
3856 
3857 /* ------------------------------------------------------------------------ */
3858 
3859 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3860 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3861 
3862 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3863  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3864  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3865  kmp_depend_info_t *noalias_dep_list);
3866 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3867  kmp_int32 ndeps,
3868  kmp_depend_info_t *dep_list,
3869  kmp_int32 ndeps_noalias,
3870  kmp_depend_info_t *noalias_dep_list);
3871 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3872  bool serialize_immediate);
3873 
3874 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3875  kmp_int32 cncl_kind);
3876 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3877  kmp_int32 cncl_kind);
3878 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3879 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3880 
3881 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3882 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3883 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3884  kmp_int32 if_val, kmp_uint64 *lb,
3885  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3886  kmp_int32 sched, kmp_uint64 grainsize,
3887  void *task_dup);
3888 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3889  kmp_task_t *task, kmp_int32 if_val,
3890  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3891  kmp_int32 nogroup, kmp_int32 sched,
3892  kmp_uint64 grainsize, kmp_int32 modifier,
3893  void *task_dup);
3894 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3895 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3896 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3897 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3898  int is_ws, int num,
3899  void *data);
3900 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3901  int num, void *data);
3902 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3903  int is_ws);
3904 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3905  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3906  kmp_task_affinity_info_t *affin_list);
3907 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3908 KMP_EXPORT int __kmp_get_max_teams(void);
3909 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3910 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3911 
3912 /* Lock interface routines (fast versions with gtid passed in) */
3913 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3914  void **user_lock);
3915 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3916  void **user_lock);
3917 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3918  void **user_lock);
3919 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3920  void **user_lock);
3921 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3922 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3923  void **user_lock);
3924 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3925  void **user_lock);
3926 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3927  void **user_lock);
3928 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3929 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3930  void **user_lock);
3931 
3932 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3933  void **user_lock, uintptr_t hint);
3934 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3935  void **user_lock,
3936  uintptr_t hint);
3937 
3938 /* Interface to fast scalable reduce methods routines */
3939 
3940 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3941  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3942  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3943  kmp_critical_name *lck);
3944 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3945  kmp_critical_name *lck);
3946 KMP_EXPORT kmp_int32 __kmpc_reduce(
3947  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3948  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3949  kmp_critical_name *lck);
3950 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3951  kmp_critical_name *lck);
3952 
3953 /* Internal fast reduction routines */
3954 
3955 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3956  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3957  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3958  kmp_critical_name *lck);
3959 
3960 // this function is for testing set/get/determine reduce method
3961 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3962 
3963 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3964 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3965 
3966 // C++ port
3967 // missing 'extern "C"' declarations
3968 
3969 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3970 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3971 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3972  kmp_int32 num_threads);
3973 
3974 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3975  int proc_bind);
3976 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3977  kmp_int32 num_teams,
3978  kmp_int32 num_threads);
3979 /* Function for OpenMP 5.1 num_teams clause */
3980 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
3981  kmp_int32 num_teams_lb,
3982  kmp_int32 num_teams_ub,
3983  kmp_int32 num_threads);
3984 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3985  kmpc_micro microtask, ...);
3986 struct kmp_dim { // loop bounds info casted to kmp_int64
3987  kmp_int64 lo; // lower
3988  kmp_int64 up; // upper
3989  kmp_int64 st; // stride
3990 };
3991 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3992  kmp_int32 num_dims,
3993  const struct kmp_dim *dims);
3994 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3995  const kmp_int64 *vec);
3996 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3997  const kmp_int64 *vec);
3998 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3999 
4000 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4001  void *data, size_t size,
4002  void ***cache);
4003 
4004 // Symbols for MS mutual detection.
4005 extern int _You_must_link_with_exactly_one_OpenMP_library;
4006 extern int _You_must_link_with_Intel_OpenMP_library;
4007 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
4008 extern int _You_must_link_with_Microsoft_OpenMP_library;
4009 #endif
4010 
4011 // The routines below are not exported.
4012 // Consider making them 'static' in corresponding source files.
4013 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4014  void *data_addr, size_t pc_size);
4015 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4016  void *data_addr,
4017  size_t pc_size);
4018 void __kmp_threadprivate_resize_cache(int newCapacity);
4019 void __kmp_cleanup_threadprivate_caches();
4020 
4021 // ompc_, kmpc_ entries moved from omp.h.
4022 #if KMP_OS_WINDOWS
4023 #define KMPC_CONVENTION __cdecl
4024 #else
4025 #define KMPC_CONVENTION
4026 #endif
4027 
4028 #ifndef __OMP_H
4029 typedef enum omp_sched_t {
4030  omp_sched_static = 1,
4031  omp_sched_dynamic = 2,
4032  omp_sched_guided = 3,
4033  omp_sched_auto = 4
4034 } omp_sched_t;
4035 typedef void *kmp_affinity_mask_t;
4036 #endif
4037 
4038 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4039 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4040 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4041 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4042 KMP_EXPORT int KMPC_CONVENTION
4043 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4044 KMP_EXPORT int KMPC_CONVENTION
4045 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4046 KMP_EXPORT int KMPC_CONVENTION
4047 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4048 
4049 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4050 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4051 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4052 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4053 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4054 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4055 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4056 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4057 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4058  char const *format);
4059 
4060 enum kmp_target_offload_kind {
4061  tgt_disabled = 0,
4062  tgt_default = 1,
4063  tgt_mandatory = 2
4064 };
4065 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4066 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4067 extern kmp_target_offload_kind_t __kmp_target_offload;
4068 extern int __kmpc_get_target_offload();
4069 
4070 // Constants used in libomptarget
4071 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4072 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4073 
4074 // OMP Pause Resource
4075 
4076 // The following enum is used both to set the status in __kmp_pause_status, and
4077 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4078 typedef enum kmp_pause_status_t {
4079  kmp_not_paused = 0, // status is not paused, or, requesting resume
4080  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4081  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4082 } kmp_pause_status_t;
4083 
4084 // This stores the pause state of the runtime
4085 extern kmp_pause_status_t __kmp_pause_status;
4086 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4087 extern int __kmp_pause_resource(kmp_pause_status_t level);
4088 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4089 extern void __kmp_resume_if_soft_paused();
4090 // Hard resume simply resets the status to not paused. Library will appear to
4091 // be uninitialized after hard pause. Let OMP constructs trigger required
4092 // initializations.
4093 static inline void __kmp_resume_if_hard_paused() {
4094  if (__kmp_pause_status == kmp_hard_paused) {
4095  __kmp_pause_status = kmp_not_paused;
4096  }
4097 }
4098 
4099 extern void __kmp_omp_display_env(int verbose);
4100 
4101 // 1: it is initializing hidden helper team
4102 extern volatile int __kmp_init_hidden_helper;
4103 // 1: the hidden helper team is done
4104 extern volatile int __kmp_hidden_helper_team_done;
4105 // 1: enable hidden helper task
4106 extern kmp_int32 __kmp_enable_hidden_helper;
4107 // Main thread of hidden helper team
4108 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4109 // Descriptors for the hidden helper threads
4110 extern kmp_info_t **__kmp_hidden_helper_threads;
4111 // Number of hidden helper threads
4112 extern kmp_int32 __kmp_hidden_helper_threads_num;
4113 // Number of hidden helper tasks that have not been executed yet
4114 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4115 
4116 extern void __kmp_hidden_helper_initialize();
4117 extern void __kmp_hidden_helper_threads_initz_routine();
4118 extern void __kmp_do_initialize_hidden_helper_threads();
4119 extern void __kmp_hidden_helper_threads_initz_wait();
4120 extern void __kmp_hidden_helper_initz_release();
4121 extern void __kmp_hidden_helper_threads_deinitz_wait();
4122 extern void __kmp_hidden_helper_threads_deinitz_release();
4123 extern void __kmp_hidden_helper_main_thread_wait();
4124 extern void __kmp_hidden_helper_worker_thread_wait();
4125 extern void __kmp_hidden_helper_worker_thread_signal();
4126 extern void __kmp_hidden_helper_main_thread_release();
4127 
4128 // Check whether a given thread is a hidden helper thread
4129 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4130  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4131 
4132 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4133  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4134 
4135 #define KMP_HIDDEN_HELPER_TEAM(team) \
4136  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4137 
4138 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4139 // main thread, is skipped.
4140 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4141  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4142 
4143 // Return the adjusted gtid value by subtracting from gtid the number
4144 // of hidden helper threads. This adjusted value is the gtid the thread would
4145 // have received if there were no hidden helper threads.
4146 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4147  int adjusted_gtid = gtid;
4148  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4149  gtid - __kmp_hidden_helper_threads_num >= 0) {
4150  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4151  }
4152  return adjusted_gtid;
4153 }
4154 
4155 // Support for error directive
4156 typedef enum kmp_severity_t {
4157  severity_warning = 1,
4158  severity_fatal = 2
4159 } kmp_severity_t;
4160 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4161 
4162 // Support for scope directive
4163 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4164 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4165 
4166 #ifdef __cplusplus
4167 }
4168 #endif
4169 
4170 template <bool C, bool S>
4171 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4172 template <bool C, bool S>
4173 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4174 template <bool C, bool S>
4175 extern void __kmp_atomic_suspend_64(int th_gtid,
4176  kmp_atomic_flag_64<C, S> *flag);
4177 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4178 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4179 template <bool C, bool S>
4180 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4181 template <bool C, bool S>
4182 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4183 template <bool C, bool S>
4184 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4185 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4186 #endif
4187 template <bool C, bool S>
4188 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4189 template <bool C, bool S>
4190 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4191 template <bool C, bool S>
4192 extern void __kmp_atomic_resume_64(int target_gtid,
4193  kmp_atomic_flag_64<C, S> *flag);
4194 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4195 
4196 template <bool C, bool S>
4197 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4198  kmp_flag_32<C, S> *flag, int final_spin,
4199  int *thread_finished,
4200 #if USE_ITT_BUILD
4201  void *itt_sync_obj,
4202 #endif /* USE_ITT_BUILD */
4203  kmp_int32 is_constrained);
4204 template <bool C, bool S>
4205 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4206  kmp_flag_64<C, S> *flag, int final_spin,
4207  int *thread_finished,
4208 #if USE_ITT_BUILD
4209  void *itt_sync_obj,
4210 #endif /* USE_ITT_BUILD */
4211  kmp_int32 is_constrained);
4212 template <bool C, bool S>
4213 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4214  kmp_atomic_flag_64<C, S> *flag,
4215  int final_spin, int *thread_finished,
4216 #if USE_ITT_BUILD
4217  void *itt_sync_obj,
4218 #endif /* USE_ITT_BUILD */
4219  kmp_int32 is_constrained);
4220 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4221  kmp_flag_oncore *flag, int final_spin,
4222  int *thread_finished,
4223 #if USE_ITT_BUILD
4224  void *itt_sync_obj,
4225 #endif /* USE_ITT_BUILD */
4226  kmp_int32 is_constrained);
4227 
4228 extern int __kmp_nesting_mode;
4229 extern int __kmp_nesting_mode_nlevels;
4230 extern int *__kmp_nesting_nth_level;
4231 extern void __kmp_init_nesting_mode();
4232 extern void __kmp_set_nesting_mode_threads();
4233 
4241  FILE *f;
4242 
4243  void close() {
4244  if (f && f != stdout && f != stderr) {
4245  fclose(f);
4246  f = nullptr;
4247  }
4248  }
4249 
4250 public:
4251  kmp_safe_raii_file_t() : f(nullptr) {}
4252  kmp_safe_raii_file_t(const char *filename, const char *mode,
4253  const char *env_var = nullptr)
4254  : f(nullptr) {
4255  open(filename, mode, env_var);
4256  }
4257  ~kmp_safe_raii_file_t() { close(); }
4258 
4262  void open(const char *filename, const char *mode,
4263  const char *env_var = nullptr) {
4264  KMP_ASSERT(!f);
4265  f = fopen(filename, mode);
4266  if (!f) {
4267  int code = errno;
4268  if (env_var) {
4269  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4270  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4271  } else {
4272  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4273  __kmp_msg_null);
4274  }
4275  }
4276  }
4279  int try_open(const char *filename, const char *mode) {
4280  KMP_ASSERT(!f);
4281  f = fopen(filename, mode);
4282  if (!f)
4283  return errno;
4284  return 0;
4285  }
4288  void set_stdout() {
4289  KMP_ASSERT(!f);
4290  f = stdout;
4291  }
4294  void set_stderr() {
4295  KMP_ASSERT(!f);
4296  f = stderr;
4297  }
4298  operator bool() { return bool(f); }
4299  operator FILE *() { return f; }
4300 };
4301 
4302 template <typename SourceType, typename TargetType,
4303  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4304  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4305  bool isSourceSigned = std::is_signed<SourceType>::value,
4306  bool isTargetSigned = std::is_signed<TargetType>::value>
4307 struct kmp_convert {};
4308 
4309 // Both types are signed; Source smaller
4310 template <typename SourceType, typename TargetType>
4311 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4312  static TargetType to(SourceType src) { return (TargetType)src; }
4313 };
4314 // Source equal
4315 template <typename SourceType, typename TargetType>
4316 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4317  static TargetType to(SourceType src) { return src; }
4318 };
4319 // Source bigger
4320 template <typename SourceType, typename TargetType>
4321 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4322  static TargetType to(SourceType src) {
4323  KMP_ASSERT(src <= static_cast<SourceType>(
4324  (std::numeric_limits<TargetType>::max)()));
4325  KMP_ASSERT(src >= static_cast<SourceType>(
4326  (std::numeric_limits<TargetType>::min)()));
4327  return (TargetType)src;
4328  }
4329 };
4330 
4331 // Source signed, Target unsigned
4332 // Source smaller
4333 template <typename SourceType, typename TargetType>
4334 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4335  static TargetType to(SourceType src) {
4336  KMP_ASSERT(src >= 0);
4337  return (TargetType)src;
4338  }
4339 };
4340 // Source equal
4341 template <typename SourceType, typename TargetType>
4342 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4343  static TargetType to(SourceType src) {
4344  KMP_ASSERT(src >= 0);
4345  return (TargetType)src;
4346  }
4347 };
4348 // Source bigger
4349 template <typename SourceType, typename TargetType>
4350 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4351  static TargetType to(SourceType src) {
4352  KMP_ASSERT(src >= 0);
4353  KMP_ASSERT(src <= static_cast<SourceType>(
4354  (std::numeric_limits<TargetType>::max)()));
4355  return (TargetType)src;
4356  }
4357 };
4358 
4359 // Source unsigned, Target signed
4360 // Source smaller
4361 template <typename SourceType, typename TargetType>
4362 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4363  static TargetType to(SourceType src) { return (TargetType)src; }
4364 };
4365 // Source equal
4366 template <typename SourceType, typename TargetType>
4367 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4368  static TargetType to(SourceType src) {
4369  KMP_ASSERT(src <= static_cast<SourceType>(
4370  (std::numeric_limits<TargetType>::max)()));
4371  return (TargetType)src;
4372  }
4373 };
4374 // Source bigger
4375 template <typename SourceType, typename TargetType>
4376 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4377  static TargetType to(SourceType src) {
4378  KMP_ASSERT(src <= static_cast<SourceType>(
4379  (std::numeric_limits<TargetType>::max)()));
4380  return (TargetType)src;
4381  }
4382 };
4383 
4384 // Source unsigned, Target unsigned
4385 // Source smaller
4386 template <typename SourceType, typename TargetType>
4387 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4388  static TargetType to(SourceType src) { return (TargetType)src; }
4389 };
4390 // Source equal
4391 template <typename SourceType, typename TargetType>
4392 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4393  static TargetType to(SourceType src) { return src; }
4394 };
4395 // Source bigger
4396 template <typename SourceType, typename TargetType>
4397 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4398  static TargetType to(SourceType src) {
4399  KMP_ASSERT(src <= static_cast<SourceType>(
4400  (std::numeric_limits<TargetType>::max)()));
4401  return (TargetType)src;
4402  }
4403 };
4404 
4405 template <typename T1, typename T2>
4406 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4407  *dest = kmp_convert<T1, T2>::to(src);
4408 }
4409 
4410 #endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4288
void set_stderr()
Definition: kmp.h:4294
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4279
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4262
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1547
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1571
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1565
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1588
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1578
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1600
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1594
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236